Default Title file:///clif/ BOOKS/TclshSpot/3/article.html

There's probably a 12-step program to help those of us who still prefer to use a
text-based mail reader in this day of GUI's and multimedia MIME attachments. Some of
us still get by quite well with these curses-based dinosaurs. If our mail-reader supports
hooks for metamail and the default set of viewers, we can read anything that the
GUI-based readers can send.

Except HTML. HTML was developed well after metamail, and while there are simple hooks
in the mailcap file to invoke Netscape, | don't want to start up a full browser just to
read one e-mail with an HTML attachment.

So, after grousing about this enough times, | put together a simple little HTML text
viewer. The program is pretty simple, a text widget, a scrollbar, a quit button, and a call
to the HTML rendering package.

#!/usr/local/bin/wish
source "htmllib.tcl"
build and display the button, text widget, and scrollbar

set b [button .b -text "quit" -command "exit"]
set t [text .t -yscrollcommand ".sy set"]
set s [scrollbar .sy -orient vertical -command "$t yview"]

grid $t -row 0 -column 0
grid $b -row 1 -column 0
grid $s -row 0 -column 1 -sticky ns

Read from a file if there's one on the command line, else stdin

if {$argc >= 1} {

set infl [open [lindex $argv [expr $argc - 1111
} else {

set infl stdin

}

Initialize the HTML display package.
HMinit win $t

Read the input, and display it.
HMparse html [read $infl] "HMrender $t"

Rather obviously, the main functionality in this program is in htmllib.tcl. The command
source "htmllib.tcl" merges the HTML library into the HTML viewer at run time.

The source command loads a script into a Tcl program, and evaluates the commands in
that script before evaluating the next line of the original script.

Syntax:source fileName

This is similar to the ¢ language #include or the C-Shell source command.

1of5 09/09/2014 10:05 PM

Default Title file:///clif/ BOOKS/TclshSpot/3/article.html

The source command is the easiest way to split your package into multiple source code
modules. (There are other ways, and I'll get to them in future articles.)

Steve Uhler wrote the ntmllib.tcl package while he was with the Tcl group at Sun Labs.
Since then, Steve Ball and others have used and modified it. This package shows some
tricks you can play with the proc and eval commands, and demonstrates the power of
the Tcl text widget.

Like most programming languages, Tcl allows programmers to split pieces of
functionality into subroutines to create modular code. The Tcl subroutine is sometimes
called a procedure and sometimes referred to by the name of the Tcl command that
creates a procedure, proc.

The syntax for the proc command is:

Syntax:proc name args body

The args and body parameters are generally grouped with braces when you create a
procedure in your application:

proc mySubroutine {argl arg2} {
puts "argl is: $argl"
puts "arg2 is: $arg2"
return "DONE"

}

In Tcl every line starts with a command. So, Tcl doesn't declare procedures the way
we're used to with C or FORTRAN. The word proc is a command, not a declaration.
Despite the fact that it /ooks a lot like a declaration that mySubroutine is a procedure,
what's actually happening is that the proc command is creating a new procedure, and
adding it to the procedure hash table.

The Tcl interpreter will not only evaluate scripts you've created with an editor, it will
also evaluate lines that are created at runtime by the program being evaluated.

The command that will evaluate a line of text is eval.
Syntax:eval string
The string is any valid Tcl command.

The eval command is the trick that makes the HTML parsing code in htmllib.tcl
elegantly simple. The htmllib.tcl package uses a set of regular expressions to convert
an HTML page from a list of tags and strings into a set of Tcl commands. The htmllib
package uses eval to evaluate the Tcl procedures that render the HTML page into
displayed text.

Tcl regular expression commands are rich enough to fill more than a single Tc/sh Spot
article. In the nhtmllib.tcl package, they are used to convert this text:

This is bold and <I>italics</I>.

to these Tcl commands:

2 of 5 09/09/2014 10:05 PM

Default Title file:///clif/ BOOKS/TclshSpot/3/article.html

3 of 5

HMrender .t {P} {} {} {This is }
HMrender .t {B} {} {} {bold}
HMrender .t {B} {/} {} { and }
HMrender .t {I} {} {} {italics}
HMrender .t {I} {/} {} {.}

Within the HMrender procedure, the HTML tag information is massaged into new
procedure names such as HMtag b and HMtag \b. These procedures are then evaluated to
insert strings into the text widget with the appropriate formatting.

Which, finally brings us to the text widget, and some of the things you can do with it.

The previous Tclsh Spot article showed how to create a text widget, and insert text.
Now, let's look at what we can do to control the appearance of that text.

The contents of a text widget are addressed by index. An index is a line and character
position in the format line.character. TOo match other Unix utilities, the line numbers start
at 1, and the character positions start at 0. The index 1.0 represents the first character
in a text widget, and the index 2.3 is the fourth character on the second line.

The text widget has a feature that allows scripts to tag areas of text and then define
how to display text within that area.

A tag consists of a reference name for the tag, and the start and end indices of the
area associated with that tag.

A tag is added to a text widget with the textName tag add command.

Syntax: textName tag add tagName startIndexl ?endl? ?start2? ... ?endN?
textName The text widget that will contain the tag.
tag add Add a tag at the defined index points.

startIndex ?end? The tag will be attached to the character at startIndex, and will contain
all characters up to, but not including, the character at end. If the end is
less than the startindex, or if the startindex does not refer to any
character in the text widget, then no characters are tagged.

Text within a tagged area is manipulated with the textname tag configure cOmmand.

Syntax: textName tag configure tagName -parameter value

textName The name of the text widget.

tag configure Configure the text within a tagged area.

tagName The name of the tag that defines the range of characters that will be
configured.

-parameter The parameter to be defined for this area.
The parameters include:

-font Set the font for this text.
-foreground Set the foreground color for this text.
-background Set the background color for this text.

value The value to use for this parameter.

09/09/2014 10:05 PM

Default Title file:///clif/ BOOKS/TclshSpot/3/article.html

As a simple example, this short script generates this display:

text .t -height 2 -width 20 -font {times 16 normal}
pack .t

.t insert end "This is bold text"

.t tag configure loud -font {times 16 bold}

.t tag add loud 1.8 1.12

This is bold text

That explains how the text widget can render different styles of text, but how does it
handle hypertext references?

The text and canvas widget support a bind command that lets you bind an action to an
event. Whenever a button press or rResize event happens, the defined action will occur.
The action is a Tcl script to be evaluated. The action may be multiple lines of
commands, or a single call to a Tcl procedure.

The text widget supports binding actions to events that happen to tagged areas. The
syntax for this is:

Syntax: textName tag bind tagName ?7eventType? ?script?

textName The name of the text widget.

tag bind Bind an action to an event occurring on the tagged section of text, or return
the script to be evaluated when an event occurs.

tagName The name of the tag that defines the range of characters that will accept an
event.

7eventType? |f the eventType field is set, this defines the event that will trigger this action.
The event types are the same as those defined for canvas events in section
9.5.

script The script to evaluate when this event occurs.

Adding this line to the previous example would turn the word bold red when a user
clicks on it.
.t tag bind loud {.t tag configure loud -foreground red}

In the TclTutor package, | use this technique to bring up TkMan (or the Windows help
viewer) when a user clicks on a word.

In the htmllib.tcl package, the bind command is used to invoke a procedure to handle
hypertext references.

Finally, the HTML viewer uses a scrollbar to shift the displayed section of the text
widget.

The Tcl scrollbar widget sends commands to a target widget requesting that widget
modify it's state to match the scrolibar. The scrollbar receives commands from the
target widget to modify its appearance when the target's state changes.

4 of 5 09/09/2014 10:05 PM

Default Title file:///clif/ BOOKS/TclshSpot/3/article.html

Using the Tcl scrollbar to control a text or canvas widget is fairly simple:
1. Your script creates a scrollbar and a widget to be controlled by the scrolibar

2. The two widgets are linked with the -command and -yscrollcommand (Or -xscrollcommand)
options to exchange information when their state changes.

After those steps are complete, everything else is automatic.

Syntax: scrollbar scrollbarName ?options?

scrollbar Create a scrollbar widget.
scrollbarName The name for this scrollbar
options This widget supports several options. The -command option is required.
-command “"procName ?args?" This defines the command to invoke when the
state of the scrotibar changes. Arguments that
define the changed state will be appended to the
arguments defined in this option.
-orient direction Defines the orientation for the scrollbar. The
direction May horizontal Or vertical. Defaults to
vertical.

In the HTML viewer, the code -command "$t yview" tells the scrollbar to invoke the text
widget's yview subcommand with new parameters when a user modifies the scroltbar.
The text widget option: -yscrollcommand ".sy set" causes the text widget to send
information to the scrollbar whenever its state changes.

That describes some of the details hiding inside the trivial little 20 line HTML viewing
script. All you need to do is copy that file into your /usr/local/bin directory, and add the
following line to your mailcap file, and you can view HTML messages from elm, pine, or
your favorite curses-based mail reader. (Assuming you run your curses-based mail
reader from an X-Term window.)

text/html; /usr/local/bin/htmlview.tcl

A version of the htmlview.tcl program with htmllib.tcl included is available from
http://www.cflynt.com.

5o0of 5 09/09/2014 10:05 PM

