
Tcl/Tk is a nice little language, but nothing particularly special by itself. What makes
Tcl/Tk exceptional is how easily it can be extended. The easy-to-extend nature of the
Tcl interpreter provides a playground for experimentation and has produced lots of
useful extensions.

There are two types of Tcl extensions, ones that add totally new functionality to Tcl/Tk
(as the sybtcl and oratcl extensions add database commands to Tcl) and ones that
enhance existing Tcl/Tk functionality.

These extensions give the Tcl community a chance to play with new ideas, and then
pester the folks at Scriptics to roll the best ones into the Tcl kernel.

One of my favorite extensions is BLT, written by George Howlett. This extension
enhances the Tcl base functionality with a new geometry manager, a new data type,
some enhancements to the canvas, and several new widgets including graphing and
tree display widgets.

Some of the more generic concepts introduced in BLT (the table driven geometry
manager, for instance) have been merged into the Tcl core. Others, (like the graph
widget) are sufficiently special purpose that it makes more sense to leave them in an
extension, and only load that code when you need to use it.

Which brings us back to the HTTP stock robot from the last Tclsh Spot article, and some
do-it-yourself historical data viewing.

The previous articles developed a little robot that will query newsalert.com and get prices
and volume for a list of stocks. This article will discuss saving and graphing the data
the robot returns.

The robot code looks like this:

package require http

puts [format \
 {%-5s %-9s %-7s %-5s %-6s %-9s %-9s %-9s %-8s}\
 symb last change pct date open high low volume]

foreach symbol $argv {
 set url "http://www.newsalert.com/free/stocknews?Symbol=$symbol"

 set id [::http::geturl $url]
 set page [::http::data $id]

 regexp -expanded "arts.Symbol=(.+?)\"> # Get the symbol
 (.+?)<tr>" $page m symb data
 regsub -all {<.+?>} $data {} lines
 set dataList [split [string trim $lines] \n]

 puts [eval format \
 {{%-5s %-9s %-7s %-5s %-6s %-9s %-9s %-9s %-8s}} \
 $symbol $dataList]
 }

Default Title file:///clif/BOOKS/TclshSpot/7/article7.html

1 of 8 09/09/2014 10:08 PM

To do some historical analysis, we need to collect some history. The simple way to do
this is to save data as we read it, which just involves opening a file, and writing data.

Tcl I/O commands follow the familiar convention of creating a handle to access the data
stream. This handle (called a channel in Tcl) may be used to access a file, device, pipe to
another application, or a socket. A channel to a file, device or pipe is created with the
open command.

This is the syntax for the open command:

Syntax: open streamName ?access? ?permissions?

streamName By default, the name of a file to open. If the first character of the streamName
is a pipe symbol "|", then the rest of the name is a program to run
attached to a pipe.

?access? The access method: "r" for read, "w" for write, "a" for append. Or a list of
POSIX mnemonics including RDONLY WRONLY RDWR APPEND CREAT EXCL NOCTTY
NONBLOCK TRUNC The default is "r" (RDONLY).

?permissions? When a file is created, you can declare the permissions mask in numeric
form. Tcl supports octal numbers, allowing you to set the modes to values
like 0666.

We can use "a+" for the access parameter, to either create a new file, or add data to an
existing file.

Adding a command like this before the loop will open a channel that data can be
written to:

set outfile [open "stock.data" "a+"]

The puts command can be used to either send data to the stdout device (as the robot
does with the formatted data) or to a specific channel (if the first argument is a
channel identifier).

Putting this line inside the loop will write data to the historical data file:

puts $outfile "$symbol $dataList"

This will generate lines like this:

SUNW {75 1/16} {-1 7/8} -2.4 1/28 {77 1/8} {79 1/2} {73 27/32} 19,016

which are almost useful.

History without dates is even worse than a Friday nights without dates.

All operating systems provide a hook for getting the current time. When Tcl/Tk was
ported to the Mac and Windows platforms one problem that needed to be addressed
was the different ways systems represent time and date.

The Sun Tcl development team solved this problem by adapting the time and date

Default Title file:///clif/BOOKS/TclshSpot/7/article7.html

2 of 8 09/09/2014 10:08 PM

commands from TclX to generalize access to the underlying time/date representation.
The clock command provides access to the system specific time/date, and can also
convert from human-readable format to system specific format and back. For example,
you can use the clock command to retrieve the system specific representation of a time
(seconds since an epoch), or to convert seconds to and from human readable formats
like Wed Dec

31 19:00:00 EST 1969.

Syntax: clock subcommand args

subcommand The clock command supports several subcommands including:
seconds Returns current time and date as a system dependant integer.

format
converts a system dependant integer time to a human readable
format. There are many formatting commands to fine tune the
output.

scan
converts a human readable time/date string to a system dependant
integer value.

We can decide that we'll save and view the history data on the same platform, and use
the clock seconds command to add a timestamp to the output:

puts $outfile "[clock seconds] $symbol $dataList"

Which will generate lines like this:

 949199093 SUNW {75 1/16} {-1 7/8} -2.4 1/28 {77 1/8} {79 1/2} {73 27/32} 19,016

After this robot has been running for a few months, we'll have some historical data,
and can think about looking at trends. Since this is an article about Tcl, not how to
analyze the stock market (empirical evidence indicates you should not take stock
advice from me), the analysis will consist of reading the history file and graphing
selected stocks.

We can architect this program using one of two patterns.

Single Loop Split Loops

 instantiate graph
 open data file
 while data in file {
 read data
 plot data
 }

 open data file
 while data in file {
 read data into internal structure
 }
 instantiate graph
 foreach dataset {
 plot data
 }

The single loop pattern looks seductively simple, but it's a trap.

Programs (and especially GUI based programs) should be architected with modules
that require a single type of I/O. The module that reads data from a file should only

Default Title file:///clif/BOOKS/TclshSpot/7/article7.html

3 of 8 09/09/2014 10:08 PM

interact with the file, the module that displays data should only interact with display,
and the modules that analyze data should only analyze.

Using a single loop pattern makes a small program, but the monolithic structure makes
it difficult to extract a piece of functionality for another program (like reading the data
from the file), and leads to spagetti like code that is difficult to maintain (you would
have to work around the graphing code when you want to the change the data format).

Thus, this graphing program will read the required data from the history file with one
procedure, and display that data in another.

A good design for this program would probably be one function to read the data, one
function to format it, and one to plot it, but to make life simpler (and this example
smaller), the readData procedure will select data for a single company, and will reduce
the data to the two fields we'll be graphing (the time and current price). The procedure
will return the time and price data as two lists, which can be passed to the BLT graph
widget.

Since the Tcl channel construct for I/O is so generalized, I prefer to pass a channel
handle to a procedure that will be reading data, rather than have the procedure open
the channel. This puts a bit more of the project specific information (what kind of
channel I'm reading from) outside the procedure, and keeps the procedure a bit more
generalized.

Finally, the stock prices are reported as fractions, not decimal, but the graph widget
only groks decimal numbers. A simple regular expression will split the price into a
whole number, numerator and denominator, and the expr command can convert that
into a decimal value.

The procedure to read in the data looks like this:

proc readData {infl symbol} {

 while {[set len [gets $infl line]] >= 0} {

 set id [lindex $line 1]
 if {![string match $id $symbol]} {continue}

 set price [lindex $line 2]
 set time [lindex $line 0]

 # Convert "X Y/Z" or "Y/Z" prices to decimal format

 if {[regexp {([0-9]* +)*([0-9]*)/([0-9]*)} $price m whole num denom]} {
 set price [expr $whole + ($num / $denom.0)]
 }

 lappend priceList $price
 lappend timeList $time
 }
 return [list $priceList $timeList]
}

Default Title file:///clif/BOOKS/TclshSpot/7/article7.html

4 of 8 09/09/2014 10:08 PM

This procedure can be invoked with something like:

set inputFileHandle [open $fileName "r"]
set data [readData $inputFileHandle $symbol]

set price [lindex $data 0]
set time [lindex $data 1]

Now that the data has been read and formatted, we can graph it. Which brings us back
to the BLT extension.

Before we can use the BLT extension, we need to either get a pre-compiled version of
the extension (from the Tcl-Blast CDROM, for instance), or download and build it.

You can download the latest BLT source from www.tcltk.com/blt/.

To build BLT, unpack the archive, cd to the directory it created (probably blt2.4n), and
type:

./configure;make;

If you have root permission you can type make install to complete the installation.
Otherwise, you can use the extension where it's built by setting the auto_path variable in
your script to point to the BLT library directory with a line like this:

lappend auto_path $env(HOME)/blt2.4n/library

There are two ways to use extensions with Tcl/Tk.

The old technique (which works on all platforms) is to create a new tclsh or wish
executable linked with the new extension code. When you invoke the new tclsh or wish
executable (probably named bltwish for the BLT extension), it will have all the normal
Tcl/Tk commands, as well as the new extension commands.

If your platform supports dynamicly linked shared libraries (BSD/OS after Version 4.0,
Solaris, FreeBSD, MS-Windows or Linux for example), the configure script will generate
a makefile which will create a .so (or .dll on a MS-Windows platform) file in the
src/shared directory.

Extensions built from dynamicly linked shared libraries can be loaded into a running
wish interpreter with the load command, or loaded as needed with the package require
command.

The load command is the easiest to use in a development mode. The syntax is:

Syntax: load libFile.so

If you are going to make an extension part of your regular coding, you'll want to install
the extension in a normal place (like /usr/local/lib), and let Tcl find it with the package
require command.

Syntax: package require packageName ?revision?

Default Title file:///clif/BOOKS/TclshSpot/7/article7.html

5 of 8 09/09/2014 10:08 PM

packageName The name that the package is identified by. This will probably be the letters
between lib and .so for a shared library, but might be any identification
string.

revision A number that defines the acceptable revisions. A revision number may be
a single integer, or a pair of integers. A single integer is interpreted as a
major revision number, and a pair of numbers is interpreted as a major and
minor release specification.

none Use the newest revision available.
integer Use the newest revision in this major revision number.
integer.integer Use only the revision number specified by the major.minor

revision number pair.

Once we've loaded the BLT package, creating and populating a graph is easy. The
command to create a new graph widget is graph.

Syntax: graph name ?option value?

name A name for this graph widget. Using the standard Tcl window naming
conventions.

?option value? Option and Value pairs to fine tune the appearance of the graph. The
available options include:
-background The color for the graph background.
-height The height of the graph widget
-title A title for this graph.
-width The width of the graph widget

The BLT package loads the new commands into the blt namespace, so we create a
graph with a command like:

::blt::graph .g -title "Stock Prices for $symbol" -width 500

This creates an empty graph widget. As with other Tk widgets, when a graph widget is
created, a command with the same name is created. A Tcl script can control the widget
using that command. You can think of Tk widgets as objects with transparent internal
data and a single method.

The next step is to display our data. The BLT graph widget deals with data as graph
elements. An element is a set of X and Y data and the options that describe how the
data should be displayed.

The BLT graph widget command has several subcommands including the element
command, that lets us define and modify a graph element.

Syntax: widgetName element create ?option value?

widgetName The name of a previously created graph widget.
element create Create a new graph element.

Default Title file:///clif/BOOKS/TclshSpot/7/article7.html

6 of 8 09/09/2014 10:08 PM

option value Option value pairs that define this element. Options include:
-color The color of the line
-symbol The symbol to display at data points. Values include square,

circle, diamond, plus, cross, triangle, none and user specified
bitmaps.

-xdata A list of numeric data to display on the X axis.
-ydata A list of numeric data to display on the Y axis.

Those two commands will create a graph and display a set of data. The complete
program looks like this:

#!/usr/local/bin/wish8.2

package require BLT

proc readData {infl symbol} {

 while {[set len [gets $infl line]] >= 0} {

 set id [lindex $line 1]
 if {![string match $id $symbol]} {continue}

 set price [lindex $line 2]
 set time [lindex $line 0]

 if {[regexp {([0-9]* +)*([0-9]*)/([0-9]*)} $price m whole num denom]} {
 set price [expr $whole + ($num / $denom.0)]
 }

 lappend priceList $price
 lappend timeList $time
 }
 return [list $priceList $timeList]
}

set inputFileName [lindex $argv 0]
set symbol [lindex $argv 1]

set infl [open $inputFileName r]
set data [readData $infl $symbol]

set price [lindex $data 0]
set time [lindex $data 1]

::blt::graph .g -title "Stock Prices for $symbol" -width 500
grid .g

.g element create $symbol -xdata $time -ydata $price \
 -symbol none

Default Title file:///clif/BOOKS/TclshSpot/7/article7.html

7 of 8 09/09/2014 10:08 PM

which will generate this image:

when invoked as:

graph.tcl stockdata.dat SUNW

This is better than nothing, but the dates are in seconds since the epoch, which I don't
translate to year and day in my head, and I'd like to see more than one stock at a time.
The next article will discuss ways to make this graph prettier and more useful.

Default Title file:///clif/BOOKS/TclshSpot/7/article7.html

8 of 8 09/09/2014 10:08 PM

