The previous Tclsh Spot articles discussed building a stock quote gathering robot, saving the data and
using the BLT gr aph widget to display a stock’s history.

This article will describe more details about the BLT graph widget and discuss using Tcl’ s associative
arrays.

Thefirst step for any sort of data analysisis getting the data. In this case, that means reading the stock
datafrom the file created by the stock quote retrieval robot.

The stock quote robot produces a datafile with lines that resemble this:

955127760 SUNW {95 3/8} {2 11/16} 2.9 13:00 {93 7/8} 96 {93 1/32} 6,938
955127780 INTC {134 13/16} 5 3.9 13:00 {131 3/8} {136 17/32} {131 5/16} 15,590

These are deliberately formatted (by the robot) to be Tcl lists, to make reading them a bit simpler. But,
the dataisn’t quite as ready-to-use as it might be.

The problems to address are:

® the prices are given as fractions, instead of decimal numbers.
® the trade volumes are written with commas.
® the datafor many companiesis mixed into onefile.

The first two problems are data representation issues. we can deal with them with asingle data
conversion procedure to convert fractions to decimals and strip out commas.

This procedure uses the r egexp command to convert afraction like2 1/ 2 to an arithmetic expression
like2 + 1.0/ 2.

Converting1/2to1 / 2.0 looksstrange. By default, the Tcl expr command doesn’'t convert from
integer to float before performing math operations. However, if one valueis afloat, other values are
promoted before the operation is performed. Thus, the operation 1 / 2 returnsan integer 0, while 1. 0
/2 returnsafloat 0. 5.

Ther egsub command is useful for lots of string conversion applications. In this case, we can useit to
strip unwanted commas from the volume data.

Here' s a procedure that will convert anumber in one of the two unwanted forms (fraction, or including a
comma) into adecimal.

proc normalize {val} {
Only do fraction to decimal conversion if a fraction exists.
if {[regexp {([0-9]* +)*([0-9]*)/([0-9]*)} $val m whol e num denom} {
set val [expr $whole + ($num/ $denom 0)]
}

Del ete any commas that might be in the value

regsub -all "," $val "" val

return $val

}

That leaves us with the third problem - separating the data for multiple companies into the appropriate
lists.

Pure Tcl supports three data structures.

® simple variableslike numbers or strings.
® lists.
@ associative arrays.

The associative array was first introduced to Tcl in the TclX extension, and was quickly merged into the
Tcl core. An associative array is an array structure in which the indices are strings, instead of numbers.
This concept is perfectly obviousif you're familiar with awk or per |, or perfectly bizarre if you've
always worked with languages like FORTRAN or C.

Associative arrays ook and act just like normal Tcl variables, except that the array name is followed by
apair of parentheses that enclose the index value.

The associative array is the most powerful data structure in Tcl. Using some do-it-yourself naming
conventions, you can emulate most of the complex data structures that other languages support.

For instance, using an associative array lets us write code like:

set fruitPrice(apple) .5
set fruitPrice(banana) .25

instead of the C equivalent:

struct fruit {
char *nane;
fl oat cost;

} fruitPrice[2];

fruitPrice[0].nane = "apple";
fruitPrice[0].cost = 0.5;
fruitPrice[1l].nane = "banana";
fruitPrice[1l].cost = 0.25;

If we want to track more data about our fruits, we can define a naming convention to use, we might
decide that the indices will be the fruit name followed by a data description. For example:

set fruitlnfo(apple.price) .5
set fruitlnfo(apple.inventory) 500
set fruitlnfo(apple.color) red

set fruitnane "banana"
set fruitlInfo($fruitname.price) .25

set fruitlnfo($fruitnane.inventory) 1000
set fruitlnfo($fruitnane.color) yell ow

When it comes to graphing the stock data, we want alist of timestamps and alist of pricesfor agiven
company. So, to make life (or at least this example) simple, we declare that these lists will be saved in
an associative array with an index naming convention of St ockSynbol . Descri pti on. For example
Dat a(SUNW pri ce) will havealist of selling prices, and Dat a(SUNW dat e) will have alist of
timestamps.

Thedatain thefileisaset of lines, and each lineisalist consisting of TimeStamp, Stock Symboal,
Selling Price, Absolute Change, Percent Change, Time of quotes, Openning Price, High Price, Low
Price, and Volume.

Since we know that the second item in the list will be the stock symbol, we can extract that value from
thelist with thel i ndex command. Note that the first itemin alist isat position O.

One of the features of thef or each isthat it can iterate through multiple lists ssmultaneously, retrieving
the first item from each list, then the second item, etc. The syntax for thisis:

foreach variablel listl variable2 list2 ...variableNIlistN{...}

This code will read the lines from the file and extract the stock symbol from each line. It then iterates
through the list of descriptive names, and alist of values, and appends the current value to the
appropriate list within the associative array.

proc readbata {infl} {
gl obal Data

while {[set len [gets $infl line]] >= 0} {
set id [lindex $line 1]
foreach n {date id price change pct dt o high low vol} v $line {
| append Data($id.$n) [nornalize $v]

}

After this procedure has run, the associative array Dat a will have lists of al the data we' ve collected,
indexed by stock symbol and type of data.

Now, we can get back to making graphs.

Just on general principles, | don’t want to create our graph in mainline code and pack it on the main
window. Putting this code into a procedure, with the parent frame as an argument, makes it easier to
merge this graph into alarger application when we have multiple frames to deal with.

This procedure will create an empty graph with just alabel and return the name of the new graph
widget:

proc nakeG aph {parent nane} ({
gl obal Data

:blt::graph $parent.g $nane -title "Stock Data for $nanme" -wi dth 600 -hei ght 400

return $parent.g_$nane

}

The gr aph widget displays lines as graph elements. A graph el enent isan object that contains alist of
X, Y values and some options to define how the line should be drawn.

Synt ax: w dget Nane el enent create ?option val ue?
We can draw aline showing price vstime by adding this code to the makeGr aph procedure after the

gr aph command.

set nanme " SUNW
$parent. g_%$nane el enent create "$nane Price" -xdata $Dat a($nane. date) \
-ydata $Dat a($nane. pri ce) -synbol none

This procedure will create a graph like this, with alabel and legend, and with the X axisticslisted as
seconds since the epoch.

Stock Prices for SUMNYY
o4 - [—sumw

B3 —

B2 —

Bl —

B0 —

F29000000 F29200000 F29400000 F29600000

Thisis better than nothing, but not much. However, the BLT package has lots of facilities for
customizing graphs.

For instance, the first thing | want to change on this graph isthe tic labels.

The BLT widget command axi s can be used to configure agraphs X and Y axes.

Synt ax: w dget Nane axi s configure axi sNane -optionl valuel ...

wi dget Nane The name of the graph object that contains this axis.
axi s configure |dentifiesthis command as configuring the axis

axi sName |dentifies which axisis being configured. The default axes are
X The bottom X axis
X2 TheTop X axis
Y Theleft-hand Y axis
Y2 The Right-hand Y axis

-option value An option name and the new value to associate with that option. Options include:

-fm The name of afunction to use to format thetic labels
-max The maximum value to display
-nmin The minimum value to display

- hide 1 to hide an axis, 0 to display. By default, the X and Y axes are displayed,
and the X2 and Y 2 are hidden.

S0, to show the X axistics as Month/Day, we can use the Tcl ¢l ock command to convert the seconds
since the epoch into aMM/DD format with a procedure like this:

proc fmt {graph sec} {
return [clock format $sec -format { % %l}]
}

And tell the graph to use this procedure to format the tics by adding these lines to the makeG aph
procedure.

Format the x-axis tick |abels as Month/ Day
$parent. g_$nane axis configure x -command fnt

Thisis better, but we've still collected alot of datawe aren’t viewing. Like, the trade volume, for
instance.

We could make another line on the graph to show the volumes, but lines imply that the thereis
continuity between values, and there is no connection between yesterday’ s and today’ s trade volume.

A bar chart isamore appropriate way to display thisinfo. We can generate barcharts on our BLT
graphs. In fact, there isawhole other widget (bar char t) designed for barcharts, but for this application,
it makes more sense to put the bars on the price graph.

The command to build abar is:

Synt ax: w dget Nane bar create |abel ?-option value?

bar create Create a new set of bars on the graph.
| abel A label that describes this barchart. This string will be displayed in the legend.
-option value Qption and value pairs to describe this barchart. Options include;

- xdat a A list of valuesfor the X axis.

-ydata A list of valuesfor theY axis.

- mapy The axis to map this data against. Defaults to the left hand Y axis.
- mapx The axis to map this data against. Defaults to the bottom X axis.
-fg The foreground color for the bars

-bg The background color for the bars

-barwi dth How wide to draw the bars. Defaultsto asingle pixel.

One of the tricks with putting two sets of data on the same graph is how to scale the data. Since a high
price for astock is around 100, while alow volume is around 10,000 shares, we really can’t plot both of
these against the same Y axis.

Thisiswherethe Y2 axis, and the - mapy option come in. We can map the prices on a 0-100 scale on the
left axis, and volume on a 0-100,000 scale on the right axis.

In fact, we don’t have to declare the sizes of the axes. The gr aph widget will automaticly scale the axes
from the minimum to maximum value in the data set.

So, to generate a volume barchart on the graph with our price graph, we add thisline to the makeG- aph
command:

$parent. g _$name bar create "$name Vol ume" -xdata $Dat a($nane. date) \
-ydata $Dat a($nane.vol) -mapy y2 -fg green -bg green \
- barwi dt h 2000

Since the dates on the X axis are the same for the price and volume graphs, we don’'t need to use
separate axes for that data. The - bar wi dt h 2000 makes the bars a little wider than a normal single-pixel
line (2000 seconds wide, if you are counting units).

What this doesn’t do is display the values. By default, the X2 and Y 2 axes are hidden. But, adding this
linewill display the Y2 axis:
$parent. g_$nane axis configure y2 -hide 0

That leaves the high and low data. It would be nice to see the range of values in aday, and whether our
stock closed at the top of the range or bottom.

Another feature that BLT supportsismar ker s. Markers are things that you can put at location on a
graph. They can be text messages (like "This is when the SEC cancelled trading™), or bitmaps (like a
happyface when the stock splits), or polygons, or lines.

In this example, we'll use line markers to show the high and low prices for a stock, similar to the error
lines in the graphs from your old physics | ab.

The syntax for creating markersis:

Synt ax: w dget Nane marker create type ?-option val ue?

w dget Name The name of the graph widget
mar ker create Create amarker.

type The type of marker being created. The valid typesincludet ext, |ine, bitmap,
i mge, pol ygon, andw ndow.

-option value An option/value pair. The options available vary depending on what type of marker
is being created. Options for line markers include:

-outline Thecolor for theline.
-coords A |ist of coordinates to define the line.

To create these markers, we need to tell the graph widget to draw a vertical line from the low price to the
high price at each vertex . We can do thiswith thecr eat e mar ker command, and another loop with
multiple lists and variables.

But, while we're doing that, we might as well track the maximum and minimum prices in the high and
low dataset. Since the graph was scaled to the maximum and minimum closing prices, there may be
highs and lows outside that range.

Like most of Tcl, the BLT gr aph widget is introspective. Y ou can query it to find out things like what
current configuration values are using the same conf i gur e and cget subcommands that are supported
by native Tk widgets.

Our code can query the Y axisto find out what the max and min values in the price data are before we
start looking at the high and low data.

The problem is that the graph widget hasn’t looked at the data yet. When we invoked the gr aph and
create el ement commands the interpreter didn’t actually create a graph. It placed events on the event
gueue to create the widgets as soon as the interpreter isn’t busy doing something else (like evaluating
our procedure). The event queue won’t be checked until after our process finishes the makeG aph
procedure.

The solution to this problem isto use the updat e command. The updat e command will cause the event
gueue to be processed before returning. The updat e command comes in two flavors, updat e which will
process all events, and updat e i dl e which will only process events that arein the idle loop. Updating
graphics objectsis an idle loop task, so that’s the flavor we should use for this application.

So, this code will force the idle loop to be processed, find the starting maximum and minimum prices,
draw high/low lines at each price, and then reconfigure the axis to show the new range.

Create vertical high/low lines at the vertices, and find max & mn.
foreach d $Dat a($nane. date) h $Dat a($nane. hi gh) | $Dat a($nane. | ow) {

$parent. g _$nane nmarker create line -coords [list $d $h $d $I] \
-outline blue

if {$| < $nin} {set nin $I}
if {$h > $max} {set nmax $h}

}

Now expand the Y axis to the real mn/nax range.

$parent.g_$nane axis configure y -max $max
$parent. g $nanme axis configure y -mn $mn

The code we' ve discussed in this article will generate a display that looks like this from a command like
wi sh st ockShow. tcl SUNW

Stock Data; SUMWY

7 — SLIMW Price

| 00 SUMNW Valurme

a0 — L

= 40000

anl| — 20000

I U I U I U
04017 0429 (=t}

This code, and code from other Tclsh Spot articles, is available on my new website at
htt p: //www. noucor p. com

Thisisplenty of info, but running anew command line task for each stock istoo much finger work. The
next article will discuss ways to display multiple stocksin this application.

NOTE TO EDITORS: Thisarticleisalready long. Feel freeto delete this codelisting if you need
space.

#!/usr/ 1l ocal /bin/w sh
package require BLT

set G aph(dat aNanme) stock. data
set name $argv

HHBHHH BB HHH R HHH T R T R T R R R R R R R R
proc normalize {val}--
Convert fractions to decinals and renpbve any conmmas

#

val A nuneric val ue

#

Results

Returns a legal floating point or integer val ue.
#

proc normalize {val} {

Only do fraction to decimal conversion if a fraction exists.

if {[regexp {([0-9]* +)*([0-9]*)/([0-9]*)} $val m whol e num denom} {
set val [expr $whole + ($num/ $denom 0)]

}
Del ete any commas that night be in the val ue
regsub -all "," $val "" val

return $val

HHHH TR AR HHHHHHHHHHHHH R
proc readData {infl}--

Reads data froma stock data file
Argunent s

i nfl A channel to the data file
Results

Creates lists of values in the Data gl obal associative array,
sorted by StockSynbol . DataType

S HHFHFHHFHHH

roc readData {infl} {
gl obal Data

while {[set len [gets $infl line]] >= 0} {
set id [lindex $line 1]
foreach n {date id price change pct dt o high low vol} v $line {
| append Data($id.$n) [normalize $v]

}

HHBHHH R B HHH R HHH T H R T R R T R R R R R R R R R #?
proc fnt {graph sec}--

Formats a time-since-epoch tine into MM DD

Argunents

graph The nane of the graph which includes this tic mark.
sec Seconds since the Epoch.

Results

Returns the appropriate MV DD val ue.

#

proc fmt {graph sec} {
return [clock format $sec -format { % %l}]
}

HHHHBHHH B H B H R R R R R R R R R

proc makeG aph {parent nane}--

Makes a stock graph.

Argunents

par ent A parent frame to hold this graph

nane The stock synbol to use as a key to access the data

to display in this graph.
Results
Creates a new graph widget, and returns the nane of that w dget.
#
proc nakeG aph {parent nane} {
gl obal Data

if {![winfo exists $parent.g_S$nane]} {
Create the graph
c:blt::graph $parent.g $name -title "Stock Data: $name" -wi dth 600 -hei ght 400

Format the x-axis tick |abels as Month/ Day
$parent. g_%$nane axis configure x -comand fnt

Create a line showing the stock price when the robot ran.
$parent. g_%$nane el enent create "$nanme Price" -xdata $Data($nane.date) \
-ydata $Dat a($name. price) -synbol none

Cenerate a bar chart for volune, and display the second Y axis
that the bar chart references

$parent. g_$nane bar create "$nanme Vol une" -xdata $Dat a($nane. date) \
-ydata $Dat a($nane.vol) -mapy y2 -fg green -bg green \
- barw dt h 2000

$parent. g_$nane axis configure y2 -hide 0

Do an update to force the graph to run through the data and
cancul ate the mn and max val ues.

update idl e;
set max [$parent.g_S$nane axis cget y -nmax]
set min [$parent.g_$nane axis cget y -mn]

Create vertical high/lowlines at the vertices, and find max & mn.
foreach d $Dat a($nane. date) h $Dat a($nanme. hi gh) | $Dat a($nane. | ow) {

$parent.g_$nanme marker create line -coords [list $d $h $d $I] \
-outline blue

if {$| < $nmin} {set nmin $I}
if {$h > $max} {set max $h}
}

Now expand the Y axis to the real min/nax range.

$parent.g_$nane axis configure y -max $max
$parent. g $nanme axis configure y -mn $mn

}

return $parent.g_$nane

}

set infl [open $G aph(dataNane) r]
readDat a $i nfl

cl ose $infl

set w [frame .graphs]

pack $w -side bottom

pack [makeG aph $w $nane]

