The philosophy that drove the design of most of the Unix system datafilesisthat it’s best to sacrifice a
little speed in favor of ease of maintenance. Thus, most datafiles (/ et c/ passwor d, /etc/ hosts,
etc)contain printable ascii data. If you need to examine them you can do it with mor e, and if you need to
repair them, you can do it withvi .

There are some files that contain binary data: the ut np file for example. The ut np file contains data
about all the users on a system (assuming everything is working correctly), including their login id, the
time they logged in, the | P address they logged in from, etc.

It might be nice to watch thisfile, and report when it changes. For example, if there is suddenly someone
running as root on our firewall, it might be something we are interested in knowing about.

Early versions of Tcl supported only ASCII strings, and could not handle binary data. With version 8.0,
Tcl moved to amore versatile internal data representation and added the bi nar y command. The binary
command allows easy conversion from binary representations to printable ASCII representations of
data. Tcl isstill oriented around printable ASCI1 strings but the bi nary command makes it possible to
handle binary data as well.

The binary command has two subcommands, bi nary scan, and bi nary f or mat

The syntax for these is:

Syntax: bi nary format formatString argl ?arg2? ... ?argn?

binary format Returnsabinary string created by convert one or more printable ascii stringsto a

binary format.
format String A string that describes the format of the ascii data.
arg* The printable ascii to convert
Syntax: bi nary scan binaryString formatString argl ?varNanel? ... ?var Nanen?

bi nary scan Converts abinary string to one or more printable ascii strings

bi naryString The binary data.

format String A string that describes the format of the ascii data.

var Name* Names of variables to accept the printable representation of the binary data

Theformat St ri ng for the binary commands allows binary data to be collected from or distributed to a
number of variablesin avariety of formats. It dightly resembles aregular expression string, but has a
dightly different flavor.

Like the regular expression string, abi nary command format string is composed of sets of two fields - a
descriptor for the type of data, followed by an optional count modifier.

There are several identifiers defined for this command that support converting strings, decimal data, hex
data, or floating point values by 8-bit, 16-bit or 32-bit data widths. Here are afew of the commonly used
descriptors:

h Converts from binary to/from hexadecimal digitsin little-endian order.
bi nary format h2 34 -returns"C" (0x43).
bi nary scan "4" h2 x - stores 0x43 in the variable x

H Converts from binary to/from Hexadecimal digits in big-endian order.
binary format H2 34 - returns"4" (0x34).
bi nary scan "4" H2 x - stores0x34 in the variable x

¢ Convertsan 8 bit value to/from ASCII.
binary format ¢ 0x34 - returns"4" (0x34).
bi nary scan "4" c¢ x - stores0x34 in the variable x

s Convertsa 16 bit value to/from ASCII in little-endian order.
bi nary format s 0x3435 - returns "54" (0x350x34).
bi nary scan "45" s x - stores 13620 (0x3534) in the variable x

S Convertsa 16 bit value to/from ASCII in big-endian order.
bi nary format S 0x3435 - returns "45" (0x350x34).
bi nary scan "45" S x - stores 13365 (0x3435) in the variable x

i Convertsa32 bit value to/from ASCII in little-endian order.
binary format i 0x34353637 - returns"7654" (0x350x34).
bi nary scan "45" s x - stores 13620 (0x3534) in the variable x

I Convertsa 32 bit value to/from ASCII in big-endian order.
binary format | 0x34353637 - returns"4567" (0x350x34).
bi nary scan "45" S x - stores 13365 (0x3435) in the variable x

f Converts 32 bit floating point values to/from ASCII.
binary format f 1.0 - returnsthe binary string "0x0000803f" .
bi nary scan "0x0000083f" f x - stores1.0inthevariablex

The optional count can be an integer, to list the exact number of conversionsto perform, or a*, to use all
remaining data.

The format string can be arbitrarily complex, with multiple descriptor/count pairs separated by spaces.

Here' s an example of some C code to write a structure to adisk file, and the Tcl code to read and
trandate the data:

C Codeto generatea structure Tcl Codetoread the structure

Open the input file, and read data

ﬁ: Eg: 332 set if [open tstStruct r]
main () { set d [read $if]
struct a { cl ose $if
int i; . . .
float f[2]; # scan the binary data into vari abl es.
char s[20]; ; v
} aa; bi nary scan $d "i f2 a*" i f s
FILE *of : # The string data includes any binary garbage

after the NULL byte.

aa.i = 100: # Strip off that junk.

:g';{g% = g'gf set Opos [string first [binary format c 0x00]
: R wy. incr Opos -1
strepy(aa.s, "This is a test”); set s [string range $s 0 $0pos]
of = fopen("tstStruct", "w'); .
fwite(&a, sizeof(aa), 1, of); #ufgsg:ay the results
fclose(of); Buts of
} puts $s

The output from the Tcl codeis:

100
2.5 3.79999995232
This is a test

Theflip side to thisisto write astructurein Tcl, and read it with a C program. This pair of programs
will perform that operation.

Tcl Codeto generateastructure C

#i ncl ude
#i ncl ude
main () {
struct a {
int i;
float f]
; wi " " " char s[2
set str [binary format "i f2 a20" 100 {23.4 56.78} "the other test"] Y aa
set if [open tstStruct2 w
puts -nonew ine $if $str
close $if

FI LE *of

of = fop
fread(&a
fclose(c

printf("
aa. i

The C program generates this output:

I: 100
f[0]: 23.400000 f[1]: 56.779999
str: the other test

The bi nary command makesit (relatively) easy to parse the ut np file. All we need to do islook up the
ut np. h include file on our system, examine the structure definition, and create aformat string that the
bi nary command can use to parse each structure in the ut np file.

On aLinux system, the utmp structure looks like this:

/* The structure describing an entry in the user accounting database. */
struct utnp
{
short int ut_type;
pidt ut_pid;
char ut_line[UT_LI NESI ZE] ;
char ut_id[4];
char ut _user [UT_NAMESI ZE] ;
char ut _host [UT_HOSTSI ZE]
struct exit_status ut_exit;

Type of login. */

Process ID of login process. */
Devi cenane. */

Inittab 1D */

User name. */

Host nane for renote login. */
Exit status of a process narked
as DEAD PROCESS. */

e e S
* %k X Xk X

[ong int ut_session; /* Session ID, used for wi ndow ng. */
struct tineval ut_tv; /* Time entry was made. */

int32_t ut_addr_ve6[4]; /* Internet address of renote host. */
char __unused[20]; /* Reserved for future use. */

b

Thiswould lead you to believe that aformat string like this should do the trick for extracting the
members of the structure:

type pid line id user host exit session tine addr
set f "s i a32 a4 a32 a256 s2 [i2 i4"

In a perfect world, this would work fine.

In thisworld, certain processors require that an integer start on an integer boundaary, and if a structure
declares a single short followed by along integer, then there will be two bytes of padding added so that
the integer can start on along-word boundary.

Thebi nary command includes a type descriptor that is not a data type: the @character. Where the other
type descriptors accept a count modifier, the @descriptor will accept an absolute location in the data as a
modifier.

This can be used to set the imaginary cursor in the binary datato alongword boundary, skipping the
padding. The @can also be used to set the cursor location to the start of each structure in the data set.

The next trick is that while the ut np structureis alowing for an IPV6 address, only thefirst 4 bytes are
actually being used today. So, rather than using i 4 for the IP address, we can use c4 (to read 4 bytes of
address).

This format string works for Linux:

set st to the start of the structure
start type paddi ng pidline id user host exit session tinme addr
set f "@st s @expr $st+4] i a32 a4 a32 a256 s2 [i 2 c4"

Thiswould let us generate a report with al the numbers converted to a printable format. Thisis better
than nothing, (but not alot better).

Thefirst field is the type of process described in thisrecord. The ut np. h file describes the meanings of
these types. It'sarelatively easy task to cut and paste from that file, edit alittle, and convert the

#def i ne linesto a Tcl associative array that we can use as alookup table to convert the numeric typesto
amore human friendly value:

foreach {nanme nun} {

EMPTY 0 RUN_LVL 1
BOOT_TI MVE 2 NEW TI NE 3
OLD TI ME 4 INIT_PROCESS 5
LOG N_PROCESS 6 USER_PROCESS 7
DEAD PROCESS 8 ACCOUNTI NG 9 {

set types($num) $name

The time stamp can be converted to a more human friendly form with the Tcl ¢l ock command.

The Tcl cl ock command has several subcommands that will obtain the current time (in seconds since
the epoch), convert atime in seconds to human readable format, or convert a human style time/date into
seconds.

This Tcl command will convert the system format time in the first field of theti meval structureinto a
date and time in the format MM/DD/YY HH:MM:SS:

clock format [lindex $time 0] -format "9D %"

Finally, we don’t want to report on the contents of the ut np file every 10 seconds, or even every minute.
We just want to know what’s happened if it changes.

TheTcl fi | e command also has many subcommands. A useful one for this applicationisthefil e
nt i me that reports the last modification time for afile.

We can't set atrigger to go off when afile is modified, but we can loop onthefile ntime vaue, and
only report the contents of the ut np file when the modification time changes.

set ntime O

“while {[file ntime /var/run/utnp] == $ntine} {
after 10000

set ntinme [file minme /var/run/utnp]

The code shown below will generate output resembling this when someone logs in:

Type Pi d Li ne I D User Host Exit
DEAD_PROCESS 7 Si 00
BOOT_TI ME 0 ~ ~~ reboot 00
RUN_LVL 20019 ~ ~~ runl evel 00
DEAD_PROCESS 157 I3 00
DEAD_PROCESS 701 ud 00
USER_PROCESS 702 ttyl lilclif 00
LOG N_PROCESS 703 tty2 2 LOGA N 00
LOG N_PROCESS 704 tty3 3 LOAN 00
LOG N_PROCESS 705 tty4 4 LOGA N 00

LOG N_PROCESS 706 ttys 5 LOG N 00
LOG N_PROCESS 707 tty6 6 LOG N 00
USER_PROCESS 746 pts/ 2 /2 1clif 00
USER_PROCESS 743 pts/ 1 /1 lclif 00
USER_PROCESS 744 pts/ 0 /0 lclif 00
USER_PROCESS 745 pts/3 /3 lclif 00
DEAD_PROCESS 999 pts/5 /5 00
USER_PROCESS 1163 pts/ 4 14 clif viad 00

In the code below, I’ ve assigned the out put channel to be st dout for my testing. Since the first thing a
hacker islikely to do after they’ ve broken into your system is rewrite utmp to hide their presence, this
monitor might be a good one to combine with the client/server based monitors discussed in the previous
articles to push the infomation off the possibly compromised system and onto a (hopefully) more secure
(or at least less obvious) machine inside your network.

Asusual, thiscodeisavailable online at ht t p: / / noucor p. com

Grab the type definitions from/usr/include/bits/utnp.h

foreach {nane nunm} {

EMPTY 0 RUN_LVL 1
BOOT_TI MVE 2 NEW TI ME 3
CLD_TI ME 4 I NI T_PROCESS 5
LOGE N_PROCESS 6 USER PROCESS 7
DEAD_PROCESS 8 ACCOUNTI NG 91} {
set types($num S$nane
}
W' |l use $zero to trimtrailing zeros fromthe data.

set zero [binary format c 0x00]

$reportFnt defines the widths of the colums in the report
set reportFnt {% 16s %%s %2s %R20s % 12s %%s %bs %'s YR21s %d6s}

set output stdout

set mime 0

while {1} {
while {[file nmime /var/run/utnp] == $ntine} {
after 10000

set ntime [file minme /var/run/utnp]

Di spl ay a header
puts [format $reportFnt Type Pid Line |ID User Host Exit Session Tinme Addr]

Open read and close the utnmp file
set if [open /var/run/utnmp r]

set d [read $if]

close $if

Save the length of the data buffer for future use.
set utnpLen [string |ength $d]

This is the start of the utnp structure being exan ned
set start O

As long as there is data to parse, parse it and step to the
next structure.

while {$start < $utnpLen} {

start of struct type padding pidline id user host exit\
session tine addr

set fm "@start s @expr $start +4] i a32 a4 a32 a256 s2 \
[i2 c4"

bi nary scan $d $fnt type pid line id user host exit session tinme addr

Trimtrailing zeros
foreach v {line id user host} {
set $v [string trim[set $v] $zero]

puts $output [format $reportFnt \
$types(Stype) $pid $line $id $user $host $exit $Psession \
[clock format [lindex $time O] -format "% % "] [join $addr "."]]

incr start 384

