
The philosophy that drove the design of most of the Unix system data files is that it’s best to sacrifice a
little speed in favor of ease of maintenance. Thus, most data files (/etc/password, /etc/hosts,
etc)contain printable ascii data. If you need to examine them you can do it with more, and if you need to
repair them, you can do it with vi.

There are some files that contain binary data: the utmp file for example. The utmp file contains data
about all the users on a system (assuming everything is working correctly), including their login id, the
time they logged in, the IP address they logged in from, etc.

It might be nice to watch this file, and report when it changes. For example, if there is suddenly someone
running as root on our firewall, it might be something we are interested in knowing about.

Early versions of Tcl supported only ASCII strings, and could not handle binary data. With version 8.0,
Tcl moved to a more versatile internal data representation and added the binary command. The binary
command allows easy conversion from binary representations to printable ASCII representations of
data. Tcl is still oriented around printable ASCII strings but the binary command makes it possible to
handle binary data as well.

The binary command has two subcommands, binary scan, and binary format

The syntax for these is:

Syntax: binary format formatString arg1 ?arg2? ... ?argn?

binary format Returns a binary string created by convert one or more printable ascii strings to a
binary format.

formatString A string that describes the format of the ascii data.
arg* The printable ascii to convert

Syntax: binary scan binaryString formatString arg1 ?varName1? ... ?varNamen?

binary scan Converts a binary string to one or more printable ascii strings
binaryString The binary data.
formatString A string that describes the format of the ascii data.
varName* Names of variables to accept the printable representation of the binary data

The formatString for the binary commands allows binary data to be collected from or distributed to a
number of variables in a variety of formats. It slightly resembles a regular expression string, but has a
slightly different flavor.

Like the regular expression string, a binary command format string is composed of sets of two fields - a
descriptor for the type of data, followed by an optional count modifier.

There are several identifiers defined for this command that support converting strings, decimal data, hex
data, or floating point values by 8-bit, 16-bit or 32-bit data widths. Here are a few of the commonly used
descriptors:

h Converts from binary to/from hexadecimal digits in little-endian order.
binary format h2 34 - returns "C" (0x43).
binary scan "4" h2 x - stores 0x43 in the variable x

H Converts from binary to/from Hexadecimal digits in big-endian order.
binary format H2 34 - returns "4" (0x34).
binary scan "4" H2 x - stores 0x34 in the variable x

c Converts an 8 bit value to/from ASCII.
binary format c 0x34 - returns "4" (0x34).
binary scan "4" c x - stores 0x34 in the variable x

s Converts a 16 bit value to/from ASCII in little-endian order.
binary format s 0x3435 - returns "54" (0x350x34).
binary scan "45" s x - stores 13620 (0x3534) in the variable x

S Converts a 16 bit value to/from ASCII in big-endian order.
binary format S 0x3435 - returns "45" (0x350x34).
binary scan "45" S x - stores 13365 (0x3435) in the variable x

i Converts a 32 bit value to/from ASCII in little-endian order.
binary format i 0x34353637 - returns "7654" (0x350x34).
binary scan "45" s x - stores 13620 (0x3534) in the variable x

I Converts a 32 bit value to/from ASCII in big-endian order.
binary format I 0x34353637 - returns "4567" (0x350x34).
binary scan "45" S x - stores 13365 (0x3435) in the variable x

f Converts 32 bit floating point values to/from ASCII.
binary format f 1.0 - returns the binary string "0x0000803f" .
binary scan "0x0000083f" f x - stores 1.0 in the variable x

The optional count can be an integer, to list the exact number of conversions to perform, or a *, to use all
remaining data.

The format string can be arbitrarily complex, with multiple descriptor/count pairs separated by spaces.

Here’s an example of some C code to write a structure to a disk file, and the Tcl code to read and
translate the data:

C Code to generate a structure Tcl Code to read the structure

#include
#include
main () {
 struct a {
 int i;
 float f[2];
 char s[20];
 } aa;

 FILE *of;

 aa.i = 100;

Open the input file, and read data
set if [open tstStruct r]
set d [read $if]
close $if

scan the binary data into variables.

binary scan $d "i f2 a*" i f s

The string data includes any binary garbage
after the NULL byte.
Strip off that junk.

 aa.f[0] = 2.5;
 aa.f[1] = 3.8;
 strcpy(aa.s, "This is a test");

 of = fopen("tstStruct", "w");
 fwrite(&aa, sizeof(aa), 1, of);
 fclose(of);
}

set 0pos [string first [binary format c 0x00] $s]
incr 0pos -1
set s [string range $s 0 $0pos]

Display the results
puts $i
puts $f
puts $s

The output from the Tcl code is:

 100
 2.5 3.79999995232
 This is a test

The flip side to this is to write a structure in Tcl, and read it with a C program. This pair of programs
will perform that operation.

Tcl Code to generate a structure C Code to read the structure

set str [binary format "i f2 a20" 100 {23.4 56.78} "the other test"]

set if [open tstStruct2 w]
puts -nonewline $if $str
close $if

#include
#include
main () {
 struct a {
 int i;
 float f[2];
 char s[20];
 } aa;

 FILE *of;

 of = fopen("tstStruct2", "r");
 fread(&aa, sizeof(aa), 1, of);
 fclose(of);

 printf("I: %d\nf[0]: %f f[1]: %f\nstr: %s\n",
 aa.i, aa.f[0], aa.f[1], aa.s);
}

The C program generates this output:

I: 100
f[0]: 23.400000 f[1]: 56.779999
str: the other test

The binary command makes it (relatively) easy to parse the utmp file. All we need to do is look up the
utmp.h include file on our system, examine the structure definition, and create a format string that the
binary command can use to parse each structure in the utmp file.

On a Linux system, the utmp structure looks like this:

/* The structure describing an entry in the user accounting database. */
struct utmp
{
 short int ut_type; /* Type of login. */
 pid_t ut_pid; /* Process ID of login process. */
 char ut_line[UT_LINESIZE]; /* Devicename. */
 char ut_id[4]; /* Inittab ID. */
 char ut_user[UT_NAMESIZE]; /* Username. */
 char ut_host[UT_HOSTSIZE]; /* Hostname for remote login. */
 struct exit_status ut_exit; /* Exit status of a process marked
 as DEAD_PROCESS. */
 long int ut_session; /* Session ID, used for windowing. */
 struct timeval ut_tv; /* Time entry was made. */
 int32_t ut_addr_v6[4]; /* Internet address of remote host. */
 char __unused[20]; /* Reserved for future use. */
};

This would lead you to believe that a format string like this should do the trick for extracting the
members of the structure:

type pid line id user host exit session time addr
set f "s i a32 a4 a32 a256 s2 i i2 i4"

In a perfect world, this would work fine.

In this world, certain processors require that an integer start on an integer boundaary, and if a structure
declares a single short followed by a long integer, then there will be two bytes of padding added so that
the integer can start on a long-word boundary.

The binary command includes a type descriptor that is not a data type: the @ character. Where the other
type descriptors accept a count modifier, the @ descriptor will accept an absolute location in the data as a
modifier.

This can be used to set the imaginary cursor in the binary data to a longword boundary, skipping the
padding. The @ can also be used to set the cursor location to the start of each structure in the data set.

The next trick is that while the utmp structure is allowing for an IPV6 address, only the first 4 bytes are
actually being used today. So, rather than using i4 for the IP address, we can use c4 (to read 4 bytes of
address).

This format string works for Linux:

set st to the start of the structure
 start type padding pid line id user host exit session time addr
set f "@$st s @[expr $st+4] i a32 a4 a32 a256 s2 i i2 c4"

This would let us generate a report with all the numbers converted to a printable format. This is better
than nothing, (but not a lot better).

The first field is the type of process described in this record. The utmp.h file describes the meanings of
these types. It’s a relatively easy task to cut and paste from that file, edit a little, and convert the

#define lines to a Tcl associative array that we can use as a lookup table to convert the numeric types to
a more human friendly value:

foreach {name num} {
 EMPTY 0 RUN_LVL 1
 BOOT_TIME 2 NEW_TIME 3
 OLD_TIME 4 INIT_PROCESS 5
 LOGIN_PROCESS 6 USER_PROCESS 7
 DEAD_PROCESS 8 ACCOUNTING 9} {
 set types($num) $name
}

The time stamp can be converted to a more human friendly form with the Tcl clock command.

The Tcl clock command has several subcommands that will obtain the current time (in seconds since
the epoch), convert a time in seconds to human readable format, or convert a human style time/date into
seconds.

This Tcl command will convert the system format time in the first field of the timeval structure into a
date and time in the format MM/DD/YY HH:MM:SS:

clock format [lindex $time 0] -format "%D %r"

Finally, we don’t want to report on the contents of the utmp file every 10 seconds, or even every minute.
We just want to know what’s happened if it changes.

The Tcl file command also has many subcommands. A useful one for this application is the file
mtime that reports the last modification time for a file.

We can’t set a trigger to go off when a file is modified, but we can loop on the file mtime value, and
only report the contents of the utmp file when the modification time changes.

set mtime 0
...
 while {[file mtime /var/run/utmp] == $mtime} {
 after 10000
 }
 set mtime [file mtime /var/run/utmp]

The code shown below will generate output resembling this when someone logs in:

Type Pid Line ID User Host Exit Session Time Addr
DEAD_PROCESS 7 si 0 0 0 04/03/01 07:23:27 PM 0.0.0.0
BOOT_TIME 0 ~ ~~ reboot 0 0 0 04/03/01 07:23:27 PM 0.0.0.0
RUN_LVL 20019 ~ ~~ runlevel 0 0 0 04/03/01 07:23:27 PM 0.0.0.0
DEAD_PROCESS 157 l3 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
DEAD_PROCESS 701 ud 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
USER_PROCESS 702 tty1 1 lclif 0 0 0 04/03/01 07:24:34 PM 0.0.0.0
LOGIN_PROCESS 703 tty2 2 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
LOGIN_PROCESS 704 tty3 3 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
LOGIN_PROCESS 705 tty4 4 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0

LOGIN_PROCESS 706 tty5 5 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
LOGIN_PROCESS 707 tty6 6 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
USER_PROCESS 746 pts/2 /2 lclif 0 0 0 04/03/01 07:24:44 PM 0.0.0.0
USER_PROCESS 743 pts/1 /1 lclif 0 0 0 04/03/01 07:24:44 PM 0.0.0.0
USER_PROCESS 744 pts/0 /0 lclif 0 0 0 04/03/01 07:24:44 PM 0.0.0.0
USER_PROCESS 745 pts/3 /3 lclif 0 0 0 04/03/01 07:24:44 PM 0.0.0.0
DEAD_PROCESS 999 pts/5 /5 0 0 0 04/03/01 08:47:04 PM 127.0.0.1
USER_PROCESS 1163 pts/4 /4 clif vlad 0 0 0 04/03/01 09:17:44 PM 127.0.0.1

In the code below, I’ve assigned the output channel to be stdout for my testing. Since the first thing a
hacker is likely to do after they’ve broken into your system is rewrite utmp to hide their presence, this
monitor might be a good one to combine with the client/server based monitors discussed in the previous
articles to push the infomation off the possibly compromised system and onto a (hopefully) more secure
(or at least less obvious) machine inside your network.

As usual, this code is available online at http://noucorp.com.

Grab the type definitions from /usr/include/bits/utmp.h

foreach {name num} {
 EMPTY 0 RUN_LVL 1
 BOOT_TIME 2 NEW_TIME 3
 OLD_TIME 4 INIT_PROCESS 5
 LOGIN_PROCESS 6 USER_PROCESS 7
 DEAD_PROCESS 8 ACCOUNTING 9 } {
 set types($num) $name
}

We’ll use $zero to trim trailing zeros from the data.
set zero [binary format c 0x00]

$reportFmt defines the widths of the columns in the report
set reportFmt {%-16s %6s %12s %20s %-12s %6s %5s %7s %21s %16s}

set output stdout

set mtime 0
while {1} {
 while {[file mtime /var/run/utmp] == $mtime} {
 after 10000
 }
 set mtime [file mtime /var/run/utmp]

 # Display a header
 puts [format $reportFmt Type Pid Line ID User Host Exit Session Time Addr]

 # Open read and close the utmp file
 set if [open /var/run/utmp r]
 set d [read $if]
 close $if

 # Save the length of the data buffer for future use.
 set utmpLen [string length $d]

 # This is the start of the utmp structure being examined
 set start 0

 # As long as there is data to parse, parse it and step to the
 # next structure.

 while {$start < $utmpLen} {
 # start of struct type padding pid line id user host exit\
 session time addr
 set fmt "@$start s @[expr $start +4] i a32 a4 a32 a256 s2 \
 i i2 c4"
 binary scan $d $fmt type pid line id user host exit session time addr

 # Trim trailing zeros
 foreach v {line id user host} {
 set $v [string trim [set $v] $zero]
 }

 puts $output [format $reportFmt \
 $types($type) $pid $line $id $user $host $exit $session \
 [clock format [lindex $time 0] -format "%D %r"] [join $addr "."]]

 incr start 384
 }
}

