
THE MAGAZINE OF USENIX & SAGE
June 2002 volume 27 • number 3

inside:
PROGRAMMING

THE TCLISH SPOT

by Clif Flynt

The Advanced Computing Systems Association &

The System Administrators Guild

&

25June 2002 ;login:

●

PR

O
G

RA
M

M
IN

GThere seems to be a universal rule that no matter how large a container is,

what you need to put in it is larger.

This applies to screens and graphic displays just as much as it applies to my book-
shelves. No matter how large the display, there will be an application that needs to dis-
play more information than you can fit on it.

The GUI solution to this problem is the scrollbar, which lets us create an image that’s
larger than the viewing area, and then move the viewable window to the subset of the
image we’re interested in. (If someone develops a scrollbar to put on bookcases they’ll
make a fortune.)

Syntax: scrollbar scrollbarName ?options?

scrollbar Create a scrollbar widget.
scrollbarName The name for this scrollbar.
options This widget supports several options. The -command option is

required.
-command “procName ?args?” This defines the command to

change the state of the scrollbar.
Arguments that define the changed
state will be appended to the argu-
ments defined in this option

-orient direction Defines the orientation for the
scrollbar. The direction may be hori-
zontal or vertical. Defaults to verti-
cal.

troughcolor color Defines the color for the trough
below the slider. Defaults to the
default background color of the
frames.

A scrollbar interacts with a Tk widget via callback procedures registered with the
scrollbar and the associated widget. When the widget changes configuration (for
example, more text is added to a text widget), it evaluates a script to update the scroll-
bar. When the scrollbar is modified (a user moves a slider), it evaluates a script that
will update the appropriate widget.

Several Tk widgets (listbox, entry, text, and canvas) have built in support for a scroll-
bar. Each of these widgets supports a yview and/or xview widget command that moves
the viewable window, and can be invoked by a scrollbar.

The scrollbar supports a set widget command that changes the size and location of the
slider and can be invoked by the widget associated with the scrollbar.

To make a canvas and scrollbar combination you’d use the -xscrollcommand option
to register the appropriate scrollbar’s set command to the canvas, and the scrollbar
-command option to register the canvas’s xview command to the scrollbar.

This code will create a small (50x50) window into a larger (200x50) canvas with a hor-
izontal scrollbar to reposition the displayed window, looking a lot like figure 1:

canvas .c -height 50 -width 50 -scrollregion {0 0 200 50} \
-xscrollcommand {.xsb set}

scrollbar .xsb -orient horizontal -command {.c xview}

the tclsh spot
by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting serv-
ices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

Figure 1

THE TCLSH SPOT ●

Vol. 27, No. 3 ;login:

grid .c -row 0 -column 0
grid .xsb -row 1 -column 0 -sticky ew

.c create rectangle 100 20 120 40

This is OK, but the viewable window in this example is a fixed size. It would be nice to
enable the user to resize the window. The previous Tclsh Spot article described tech-
niques for making resizable windows. This example uses the grid columnconfigure
command to allow a widget to be resized.

canvas .c -height 50 -width 50 -scrollregion {0 0 200 50} \
-xscrollcommand {.xsb set}

scrollbar .xsb -orient horizontal -command {.c xview}
grid .c -row 0 -column 0 -sticky nsew
grid .xsb -row 1 -column 0 -sticky ew

grid columnconfigure . 0 -weight 1

.c create rectangle 100 20 120 40

This makes a window that we can expand to
look like figure 2, or even stretch to display the
entire viewable area of the canvas (figure 3).

Of course, when we can see the entire canvas
we don’t need the scrollbar. It would be nice to
remove the scrollbar when it’s not needed.

The most common way to use a
scrollbar/widget combination is to invoke a
scrollbar directly from the widget and vice

versa using the xview and set methods, as we’ve done here. However, Tcl does not
require this style. You can easily write your own scripts to be invoked by the scrollbar
and widgets.

When a widget evaluates the script to modify a scrollbar it appends two values for the
start and end position of the slider. Both of these are numeric fractions between 0 and
1. If the start position is 0, and the end position is 1, that indicates that the entire view-
able area of the widget is displayed, and we don’t need a scrollbar.

We can use those values in a procedure that would check to see if the scrollbar were
still needed, and remove it when the associated widget is scaled to be fully viewable.
This procedure is derived from one of the Tk Tips on the Tcler’s Wiki
(http://mini.net/tcl/). The idea is credited to Brent Welch.

Define a grid command to be sent to the modifyScrollbar proc.
set cmd [list grid .xsb -row 1 -column 0 -sticky ew]

Create and grid a canvas using the modifyScrollbar procedure to
control the scrollbar.
canvas .c -height 50 -width 50 -scrollregion {0 0 200 50} \

-xscrollcommand [list modifyScrollbar .xsb $cmd]

grid .c -row 0 -column 0 -sticky nsew

Create the scrollbar. Do not grid. That will be done in
modifyScrollbar when necessary.

scrollbar .xsb -orient horizontal -command {.c xview}

26

Figure 2

Figure 3

http://mini.net/tcl/

Configure the column to expand when possible.
grid columnconfigure . 0 -weight 1

Put something in the canvas. Just to add interest.
.c create rectangle 100 20 120 40

###
proc modifyScrollbar {scrollbar cmd startFract endFract}—
Control the scrollbar appearance.
Arguments
scrollbar : The name of the scrollbar widget.
cmd : The command to display the scrollbar (grid, pack, place).
startFract: Fraction for the start edge of the slider. PROVIDED BY TCL.
endFract: Fraction for the end edge of the slider. PROVIDED BY TCL.

Results
If necessary, the scrollbar is displayed in (or removed from) the
parent frame.
The slider is modified to reflect new values.

proc modifyScrollbar {scrollbar cmd startFract endFract} {
if {($endFract < 1.0) || ($startFract > 0)} {

eval $cmd
$scrollbar set $startFract $endFract

} else {
eval [lindex $cmd 0] forget $scrollbar

}
}

You could hardcode a grid command in the modifyScrollbar procedure, but since the
place, pack, and grid window managers all support a forget subcommand, this trick of
passing the command to eval allows the modifyScrollbar procedure to be used with any
geometry manager.

This technique is fine for a single canvas, text, or listbox widget, but the more common
problem is just plain having too many widgets to fit on the screen. Having a scrollable
frame would make constructing a scrollable display easy, but frame widget doesn’t
support the necessary xview and yview widget commands.

However, what we can do is place a frame inside a canvas, and then scale and scroll the
canvas as necessary.

Mark Harris and Michael McClennan describe making a scrollable canvas and frame
in Effective Tcl/Tk. The big trick is that the frame should be a child window of the can-
vas you are going to place it into.

Define the grid commands for X and Y scrollbars.

set xCmd [list grid .xsb -row 1 -column 0 -sticky ew]
set yCmd [list grid .ysb -row 0 -column 1 -sticky ns]

Create a canvas and grid it.
canvas .c -height 50 -width 50 -scrollregion {0 0 200 50} \

-xscrollcommand [list modifyScrollbar .xsb $xCmd] \
-yscrollcommand [list modifyScrollbar .ysb $yCmd]

27June 2002 ;login:

●

PR

O
G

RA
M

M
IN

G

Figure 4

THE TCLSH SPOT ●

Vol. 27, No. 3 ;login:28

grid .c -row 0 -column 0 -sticky nsew

Create the scrollbars; they’ll be gridded when needed.
scrollbar .xsb -orient horizontal -command {.c xview}
scrollbar .ysb -orient vertical -command {.c yview}

Allow the canvas to resize when the parent resizes.
grid columnconfigure . 0 -weight 1
grid rowconfigure . 0 -weight 1

Create a frame as a child of the canvas, place it in the
canvas, and bind resizing the canvas to frame size changes.
frame .c.f
.c create window 0 0 -window .c.f -anchor nw
bind .c.f <Configure> {.c configure -scrollregion [.c bbox all]}

Build some label widgets in the frame for a demo.

for {set i 0} {$i < 3} {incr i} {
for {set j 0} {$j < 6} {incr j} {

label .c.f.l_$i,$j -text "Row: $j Col: $i" \
-relief raised -borderwidth 3

grid .c.f.l_$i,$j -row $j -column $i
}
}

This set of code will create a window that looks like figure 5.

If the main window is expanded, the scrollbars go away, as in
figure 6.

There are a couple of lines to take note of in this code:

.c create window 0 0 -window .c.f -anchor nw

This places the frame inside the canvas, with the upper left
corner of the frame at the top left corner of the canvas.

bind .c.f <Configure> {.c configure -scrollregion
[.c bbox all]}

This line causes the canvas scrollregion to be updated when-
ever the size of the frame is modified. The frame size will be
modified when a user resizes the window or a new widget is
added to the frame.

The bind command binds an event/window pair to a script.

Syntax: bind window event script

Causes script to be evaluated if event occurs while window has focus.
window The name of the window to which this script will be bound.
event The event to use as a trigger for this script.
script The script to evaluate when the event occurs.

The .c bbox all command is a canvas command that returns the bounding rectangle
for a set of canvas objects. The all option tells the canvas to select all objects it is dis-
playing.

The bounding rectangle for all the objects in the canvas (in this case, just the one
frame) is the total displayable area of the canvas. We can then configure the
-scrollregion to that area, to allow all the objects in the canvas to be scrolled to.

Figure 5

Figure 6

29June 2002 ;login:

●

PR

O
G

RA
M

M
IN

GWhen the canvas is resized by the configure command, it automatically invokes its
-xscrollcommand and -yscrollcommand scripts.

This is a useful set of code, but it would be more useful to be able to create scrollable
frames when needed.

This code pulls together these ideas into a pair of procedures to create scrollable
frames with scrollbars that appear and vanish as needed.

package provide scrollFrame 1.1

###
proc scrollingFrame {name args}—
scrollingFrame - Returns the name of a frame within a canvas
attached to vanishing scrollbars.
Arguments
name The name of the parent frame.
NOTE :: NON-CONVENTIONAL RETURN – RETURNS THE INTERNAL
NAME, NOT THE NAME OF THE PARENT WINDOW!!!
args Arguments to be passed to frame and canvas

Results
Creates 2 frames, a canvas and a two scrollbars.
|-------------| <- Outer holding frame
| cccccccccc ^| Canvas within outer frame
| cffffffffc || Frame within canvas
| cf fc ||
| cffffffffc || <— Vertical Scrollbar within outer frame
| cccccccccc v |
| <--------> | Horizontal Scrollbar within outer frame
|-------------|

proc scrollingFrame {outerFrame args} {

if {[string first "." $outerFrame] != 0} {
error "$outerFrame is not a legitimate window name -

must start with '.'"
}

Create the outer frame (or not if it already exists).
catch {frame $outerFrame}

Build the scrollbar commands for the X and Y scrollbar.

set cmdy [list modifyScrollBar $outerFrame.sby \
[list grid $outerFrame.sby -row 0 -column 1 -sticky ns]]

set cmdx [list modifyScrollBar $outerFrame.sbx \
[list grid $outerFrame.sbx -row 1 -column 0 -sticky ew]]

Create and grid the canvas.
set cvs [canvas $outerFrame.c -yscrollcommand $cmdy

-xscrollcommand $cmdx]
grid $outerFrame.c -row 0 -column 0 -sticky news

Create the scrollbars. Do not grid. They’ll be gridded when
needed.

scrollbar $outerFrame.sby -orient vertical -command "$cvs yview"
scrollbar $outerFrame.sbx -orient horizontal -command "$cvs xview"

THE TCLSH SPOT ●

Vol. 27, No. 3 ;login:

Configure the canvas to expand with its holding frame.
grid rowconfigure $outerFrame 0 -weight 1
grid columnconfigure $outerFrame 0 -weight 1

Create a frame to go within the canvas. The various frame
options are applied here.
eval frame $cvs.f $args

Place the new frame within the canvas.
$cvs create window 0 0 -window $cvs.f -anchor nw

Bind frame changes to modify the canvas scrollregion.
bind $cvs.f <Configure> "$cvs configure -scrollregion \[$cvs bbox all\]"

return $cvs.f
}

###
#
proc modifyScrollbar {scrollbar cmd startFract endFract}—
Control the scrollbar appearance.
Arguments
scrollbar : The name of the scrollbar widget.
cmd : The command to display the scrollbar (grid, pack, place).
startFract : Fraction for the start edge of the slider. PROVIDED BY TCL.
endFract : Fraction for the end edge of the slider. PROVIDED BY TCL.

Results
If necessary, the scrollbar is displayed in (or removed from) the
parent frame.
The slider is modified to reflect new values.

proc modifyScrollBar {scrollbar cmd startFract endFract} {
if {($startFract > 0) || ($endFract < 1.0)} {

eval $cmd
$scrollbar set $startFract $endFract

} else {
eval [lindex $cmd 0] forget $scrollbar

}
}

The frame returned by the scrollingFrame procedure can be used just like any other
frame; you can place new widgets into it using pack, place, or grid; set the relief or
background color; and so on. However, if the frame is too small to display all the widg-
ets, it will suddenly acquire a set of scrollbars.

Here’s a short example that uses the scrollingFrame procedure to create a frame and
then populates that frame with a bunch of labels.

set ff [scrollingFrame .f2 -background yellow -height 30 -width 30]
grid .f2 -row 0 -column 0 -sticky news

for {set i 0} {$i < 200} {incr i} {
label $ff.l_$i -text $i
grid $ff.l_$i -row [expr $i / 10] -column [expr $i % 10]

}
grid rowconfigure . 0 -weight 1
grid columnconfigure . 0 -weight 1

As usual, this code is available at http://www.noucorp.com.

30

http://www.noucorp.com

