o
® O Il‘ THE MAGAZINE OF USENIX & SAGE
’ ' February 2003 « volume 28 « number 1

Inside:

PROGRAMMING
Flynt: The Tclsh Spot

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild

the tclsh spot

by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting ser-
vices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction

ackage. He has

een programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

Analyzing Network Usage

The previous Tclsh Spot article (October 2002 ;/ogin:)
described using SWIG to build a Tcl extension that
could build and transmit datagrams over an Ethernet.

Before I'd finished the article, a friend requested a package that
could transmit various datagrams over an Ethernet, but it
needed to be fast. He was concerned that an interpreted lan-
guage like Tcl wouldn't be able to put datagrams onto the Net
fast enough.

When | test a system, | prefer to use some other platform to test
it from. Since I’'m generating the packets with a Tcl script on
one computer, | prefer to analyze the output on another piece
of hardware.

Fortunately, | have a Spirent/AdTech AX-4000 broadband ana-
lyzer handy, and it can be programmed using Tcl.

This article will briefly describe the Spirent/AdTech AX-4000,
and the AdTech Tcl extension, and show how to use the equip-
ment to check how fully a network is being utilized.

The AX-4000 (http://www.adtech-inc.com/) is a configurable
piece of hardware that can generate and analyze data packets on
four different transmission technologies (IP, ATM, Ethernet,
and Frame Relay) simultaneously at speeds up to 10Gbps.

A simple system will include a controller card set and an inter-
face card set. The interface card set contains the circuitry to
generate and analyze packets for a transmission medium. A
controller card set can control multiple interface cards, which
can be mixed and matched to work with Ethernet, fiber, etc.

For this example, the AX-4000 is equipped with a controller
and an Ethernet interface card set.

14

The AX-4000 comes with a nice GUI for performing bench test-
ing, and it also includes a Tcl extension. The primary purpose
for the Tcl extension is to support automated testing, but it’s
also useful for folks who prefer to work outside the GUI.

The general flow for an AdTech Tcl script is:

1. Load the AxTcl extension.

2. Initialize the connection to the AX-4000 controller.

3. Reserve an interface card set.

4. Create a generic interface object attached to the card set.
5. Create an analyzer or generator attached to the interface.
6. Configure the analyzer or generator.

7. Run the test.

8. Analyze the results.

Compiled Tcl extensions can be loaded with the Tcl load com-
mand:

Syntax: load libFile.so ?name?

Load a shared library extension into the Tcl
interpreter.

libFile.so The name of the library to load. The filename suffix
will depend on the base operating system.

’name? An optional name for the Tcl initialization function.

The AxTcl extension is available for Solaris, Linux, or Windows
platforms. One trick for writing a script that will load on all
platforms is to use the catch command to see if the extension
loads correctly, and step on to the next possibility if the load
fails.

if {[catch {load $base/tclwin/libax4k.dll ax4kpkgh} {
catch {load $base/tclclib/libax4dk.so axdkpkg}
}

Once the AxTcl extension is loaded, it creates several new Tcl
commands, each of which has several subcommands. The new
commands include:

ax Interacts with an AX-4000 system.

Establishes and configures a connection to
the generic interface.

interface

enet Interacts with an Ethernet connection.

Establishes and configures a connection to
the analyzer.

analyzer

The ax commands provide the high-level control needed for the
interactions with the AX-4000 equipment.

One of the features that make the AX-4000 series so fast is that
they make heavy use of programmable logic. This feature allows

Vol. 28, No. 1 ;login:

http://www.adtech-inc.com/

the hardware to be configured for specific tasks, which are then hardware driven rather than software driven. Programming the
hardware allows the AX-4000 to do things like saturate the largest optical fiber with packets and analyze them in real time.

The programmability of the AdTech hardware also means that special hardware configuration files must be available to program the
boards for the various tests to be performed.

The ax hwdir command tells the AxTcl extension where to find the hardware configuration files.
Syntax: ax hwdir path

ax hwdir directory Identifies the directory for the AX-4000 BIOS files.
Default is: ../bios

Once the system knows where to find the BIOS files with the programmed logic definitions, you can initialize the connection to the
AX-4000 with the ax init command.

Syntax: ax init 7-option value?

Initialize internal tables in the AX library.
Options include:

-remote IP The IP address of an AX-4000 accessed via an Ethernet port.

-user name A username that will be used to identify who is using this AX-4000.

-nobios 1/0 By default ax init will download BIOS to a freshly powered-on AX-4000. Setting this to 1 will inhibit that down-
load.

-forceload 1/0 Forces the AX-4000 to get a new BIOS upload. When working with multiple revisions of AxTcl, this is recom-
mended.

Initializing the connection to an AX-4000 can be done with these two lines of Tcl code:
ax hwdir $base/bios
ax init -remote $ipAddress -user clif -forceload 0

The AX-4000 can support multiple users and multiple interface cards on a chassis, but only one user at a time can use an interface
card set. To avoid having two applications fighting for control of a card set, the AxTcl extension allows an application to lock (and
release) the physical card set for an application’s use.

The two commands that control this for an Ethernet card set are enet lock and enet unlock.
Syntax: enet lock LogicallD Controllerindex DevicelD

Locks a device for this script’s use and assigns a logical ID to that device.
NOTE: Throws an error if device is already locked.

LogicallD A value provided by the script to use to reference this locked device.
ControllerIndex — The IP Address/Hostname of this AX-4000.
DevicelD The position of the card being locked (counting from 1).

Syntax: enet unlock LogicallD

enet unlock Unlocks a device identified by LogicallD from a previous enet lock command.
LogicallD The device identifier assigned in a previous enet lock command.
If this parameter is left out, all devices previously locked in this session are unlocked.

The enet lock command will throw an error if another user has locked a card set. Once the lock has been successful, however, a script
can create an interface to the card set.

Syntax: interface create Name Device ?-key value?

interface create Create a new interface object.
Name The name to assign to the new interface.

February 2003 ;login: THE TCLSH SPOT

PROGRAMMING

15

16

Device The device to attach this interface name to.
?-key value? Option and value pairs to control how the interface behaves or to configure the card set.

These options vary from card set to card set, and may include:

-interface A|B For dual interfaces, selects the left (default) as A or right B interface.
-ifmode type Defines the type of data to be used on this interface. Values for interface type include:
POS Sonet Packets.
IPOETHER Internet protocol datagrams encapsulated in Ethernet frames.
IPoPPP Internet protocol datagrams encapsulated in PPP frames.
IPOATM Internet protocol datagrams encapsulated in ATM frames.
IPOFR Internet protocol datagrams encapsulated in Frame Relay frames.

The interface create command creates a new command with the same name as the interface you've created. Your script will use this
new command to interact with the interface. Two of the main subcommands for the new interface are set (to set device-specific
options) and run (to start the interface).

The code to create, configure, and start an interface looks like this:

interface create int1 $logicallD -ifmode IPOETHER
int1 set -mode normal -dataRate MBS10
int1 run

The next step is to create an analyzer and/or generator object attached to the interface object. Creating the analyzer or generator fol-
lows the same pattern as creating the interface.

Syntax: analyzer create Name Device

analyzer create Create a new analyzer object.

Name The name to assign to the new analyzer.
Device The device to attach this analyzer name to. This is the logical device that was locked in a previous enet lock
command.

The analyzer create command will create a new analyzer object and a new command to use to interact with that object. The analyzer
command supports many subcommands, including:

analyzerName set Name Device

Sets one or more configuration options for this analyzer. Configuration options vary for different analyzer cards.
analyzerName display

Returns a list of the current settings.
analyzerName run

Starts the analyzer running.
analyzerName reset

Stops the analyzer and clears all the statistics the analyzer can gather.
analyzerName stop

Stops the analyzer but does not clear any values.
analyzerName destroy

Destroys the analyzer, freeing it for other use.

analyzerName stats
Returns a set of keyword-value pairs as a list. The exact return depends on the analyzer being used.

The analyzer can do lots of interesting things, including capturing packets, generating histograms of the data, and much more. For
this application, all we need is to look at the statistics that the AX-4000 analyzer gathers whenever it’s running.

This code resets the analyzer, runs it for two seconds, collects the runtime statistics, and releases the device for other users.

Reset the statistics to O
anal reset.

Vol. 28, No. 1 ;login:

Pause until the AX-4000 completes its action
after 400

Start the analyzer

anal run

Wait 2 seconds and get the statistics
after 2000

set anaStats [anal stats]

Stop the hardware and

destroy the software object

anal stop

anal destroy

Finally, unlock the device for the next user
enet unlock $logicallD

Most AxTcl commands return their results as a list of keyword
and value pairs. The Tcl foreach command makes this data for-
mat easy to use.

Syntax: foreach varlist datalist body
Evaluate body for each of the items in datalList.

varList Alist of variable names. Data values will be
extracted from the datalist and assigned to these
variables.

dataList A list of data values to step through.

body The body of code to evaluate on each pass

through the loop$

The data will be easier to read if it's formatted as columns. The
Tcl format command implements the same string formatting
rules as the C library sprintf command.

Syntax: format formatString valuel ?value2?...

This code will display a table of keywords and values from the
analyzer:

puts "ANALYZER STATS"
foreach {key1 val1} $anaStats {

puts [format "%-30s % 12s" $key1 $valll
}

The output looks like this:
ANALYZER STATS

-elapsedTime 2081
-totalPackets 19110
-totalPacketBytes 1949220
-goodPackets 19110
-goodPacketBytes 1949220
-goodDatagramBytes 1605240
-totalPacketRate 10160
-goodPacketRate 10160
-goodPacketBitRate 8291
-goodDatagramBitRate 68275
-lineRatePerc 111.70
-tcpPackets 0

February 2003 ;login: THE TCLSH SPOT

-tcpRatio 0.00
-tcpChecksumErrors 0
-udpPackets 0
-udpRatio 0.00
-udpChecksumErrors 0
-icmpPackets 19110
-icmpRatio 1.00
-ipPackets 19110.00
-ipChecksumErrors 0.00
-avgDatagramlLength 84
-minDatagramLength 84
-maxDatagramLength 84
-avgPacketlLength 102
-minPacketlLength 102
-maxPacketLength 102
-substreamCount 1
-substreamErrorCount 0
-filterCount 2

Dividing the -totalPacketBytes value (1,949,220) by the 2.081
seconds that the test ran gives 936,674 bytes/second, which is
fairly close to 100 percent usage of the 10 megabit/second theo-
retical bandwidth of the network.

This provides a quick introduction to the AX-4000 and AxTcl.
The next few articles will discuss generating different types of
Ethernet frames, verifying the generator with the AX-4000, and
using those frames to validate a Linux-based firewall.

As usual, the code for these examples is available at
http://www.noucorp.com.

PROGRAMMING

17

http://www.noucorp.com

