
THE MAGAZINE OF USENIX & SAGE
April 2004 • volume 29 • number 2

The Advanced Computing Systems Association

inside:
PROGRAMMING
Flynt: The Tclsh Spot: Mobile Agents in Tcl

41April 2004 ;login: THE TCLSH SPOT l

l

P

R
O

G
R

A
M

M
IN

G

Mobile Agents in Tcl
The previous “Tclsh Spot” article described how to build
a client/server pair using the Secure Socket Layer exten-
sion (TLS) and a safe slave interpreter. This article
extends that client/server pair to support transferring
complete Tcl programs to the server for remote evalua-
tion.

A mobile software agent is a set of code that can be sent from
one trusted system to another to be evaluated on the remote
system. A few years ago, this was considered a rather exotic style
of program architecture, but it’s become commonplace now.
For example, when you download a Web page with a script
component, your browser evaluates that code in a safe sandbox
on your system. You are trusting that the code will not escape
that sandbox and damage your system. Whether or not this
trust is misplaced is left as an exercise for the reader. (If you
hear a rant about IE and lack of proper sandboxes, you aren’t
mistaken.)

The protocol for the Client/Server pair described in this article
is simple. The Server sends a Ready prompt when it’s ready to
accept input. The client sends Tcl commands to the server and
waits for a Ready.

The simple client/server pair described in the previous article
was able to implement most of this protocol, but had some
shortcomings.

One of the least obvious problems is that using Tcl’s basic
interp create -safe command provides a bit more security
than we need.

The safe interpreter created with the interp create -safe com-
mand is very limited in what it will do. Among the restrictions
is that a safe interpreter has absolutely no access to the file sys-
tem. This makes it impossible to load Tcl extensions or pure Tcl
packages into the slave interpreter. We can extend a safe inter-
preter with the interp alias command that was described in the
previous article to add support for loading packages, safe access
to the file system, and such. In fact, there are enough require-
ments for extended functionality that Tcl provides a package
with the common aliases already built.

The Tcl distribution comes with the ::safe:: package which
extends the base safe interpreter. The interpreters created with
the ::safe::interp create command still run in a safe sandbox,
but also have hooks to allow a few more actions, including load-
ing pure Tcl packages and extensions with a SafeInit entry
point to be loaded into the safe slave.

There are several commands in the ::safe:: package (docu-
mented under man safe), but the three important ones are:

Syntax:::safe::interp create ?name? ?key value?

::safe::interp create create a new safe interpreter. Returns the
name of the new interpreter

?name? An optional name for the new inter-
preter. The default name will be some-
thing boring like interp0.

?key value? Optional keyword/value pairs to fine-
tune the safe interpreter’s environment.
Some include:

-statics boolean
True allows the slave interpreter to
load statically linked packages (load
{} Tk). False disables this ability. The
default is True.

-nested boolean
True allows the slave inter-
preter to load packages into
sub-interpreters. False dis-
ables this ability. The
default is True.

-deleteHook script
A script to be evaluated before delet-
ing an interpreter. This hook gives
the slave interpreter a chance to do
cleanup (perhaps log an exit mes-
sage) before being destroyed.

by Clif Flynt
Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting ser-
vices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

the tclsh spot

Vol. 29, No.2 ;login:42

Syntax:::safe::interpAddToAccessPath path

::safe::interpAddToAccessPath
Adds directories to the list of directories the
slave interpreter can search to find packages
to load. This list is maintained in the parent
interpreter. A safe slave cannot access the list,
thus preventing a slave from leaking informa-
tion about a filesystem to the outside world.

path The directory path to add.

Syntax:::safe::interpDelete interpName

::safe::interpDelete
Delete the slave interpreter. All state for that
interpreter will be destroyed.

interpName
The name of the interpreter to be destroyed.

The following code uses the ::safe:: commands to create the
interpreters. For a more restrictive environment, you can substi-
tute the base interp create etc. for these.

The previous example server had only one set of state informa-
tion and only one slave interpreter. For a single-purpose, state-
less server, this is appropriate. However, if two agents tried to
use such a server at the same time and each sent a script with
the same name but a different body to be evaluated, one agent
would be running the wrong code.

The agent server must maintain separate interpreters and sets of
state information for each active connection, to keep the agents
from interfering with each other. Fortunately, all the state for an
active agent can be kept in that agent’s interpreter. All we need
to track in the server is the channel associated with an agent, the
name of the interpreter for that agent, and incomplete input
waiting to be evaluated.

In C, you might have an array of state structures to hold the
necessary information. It might look like this:

struct agent {
IO_channel *channel;
Tcl_Interp *interp;
char *input;

} activeAgents[10];

When data is read from a client, the server steps through the
structures in the array activeAgents until it finds the appropri-
ate element, identified by the IO_channel field.

Tcl does not support an array of structures the way you would
define the data in C or Java. However, the associative array pro-
vides the same functionality for this requirement. In Tcl, we can

initialize the equivalent data structure keyed by the channel
identifier, like this:

set State(interp.$channel) [interp create -safe]
set State(input.$channel) " "

The procedure to establish a connection with a new client
described in the previous “Tclsh Spot” article just waited for the
handshake to be complete and established a fileevent to handle
the input.

proc openConnection {channel clientaddr clientport } {
global tlssignal

Wait until the handshake is complete
fileevent $channel readable \

[list handshakeHandler $channel $clientaddr]
vwait tlssignal($channel)

fileevent $channel readable\
[list processMessage $channel]

fconfigure for line buffering.
fconfigure $channel -buffering line

}

In the agent-based server, the procedure starts the same, but
after the handshke is complete, it creates and initializes the
interpreter for this agent. The interp alias for writeLog is a pro-
cedure that was defined in the previous article; it allows a safe
slave interpreter to write to a predefined log file.

proc openConnection {channel clientaddr clientport } {
global State
global tlssignal

Wait until the handshake is complete
fileevent $channel readable \

[list handshakeHandler $channel $clientaddr]
vwait tlssignal($channel)

fileevent $channel readable [list readLine $channel]

fconfigure for line buffering.
fconfigure $channel -buffering line

Create a safe interpreter
set State(interp.$channel) [::safe::interp create]

Link the 'writeLog' procedure in this environment
to the 'log' procedure in the safe child interpreter.

$State(interp.$channel) alias log writeLog
puts $channel "Ready"

}

The next trick is to send the agent server a procedure to run.
Since the server is running in a secure sandbox, we don’t need a
special protocol to support this: we can send normal Tcl com-

43April 2004 ;login:

l

P

R
O

G
R

A
M

M
IN

Gmands to the server. This even includes complex commands
such as procedure and namespace definitions.

However, in order to download scripts, the agent server must be
able to accept multiple line inputs. The previous server read a
single line and evaluated it. If the line were something like “pro-
cedure foo {args} {,” it would be incomplete, and the slave
interpreter would throw an error. The server needs to know
when a complete command has been received before it tries to
evaluate that input.

This problem has been solved in many ways ranging from com-
plex parsers to requiring a special pattern like “\n.\n” to mark
the end of input.

Each of these techniques has some limitations:

1. An input parser must return the same results as the actual
evaluation parser. Keeping these in sync and verifying that
neither has unexpected exception conditions can cause
headaches.

2. A special pattern must not be something that could exist
in a real message.

Tcl has an elegant solution to this problem: use the actual parse
engine to test input.

One of the powerful aspects of Tcl is how many of the inter-
preter’s internal functions are exposed to the script writer. The
script writer can use the complex parser that’s already built into
Tcl to test input data. Since the same parser is used both to test
the input and then to evaluate it, this guarantees that the test
parser and evaluation parser accept the same information,

The info command gives a Tcl script a sneak-peek into the state
of the interpreter. You can get a list of known commands, global
and local variables, the argument and body of a procedure, and
a fair amount more.

The info complete command gives the script writer access to
the Tcl interpreter’s parsing logic. It returns TRUE (1) if the
string it’s presented is a complete Tcl command, and FALSE (0)
if there are mismatched parentheses, quotes, braces, etc.

Syntax: info complete string

string The string to check for matching braces,
brackets, quotes, etc.

A server that only accepts single line commands from a client
could look like this:

proc readLine {channel} {
global State

Read a line of data
set len [gets $channel line]

Close if we’ve recevied an EOF from the client
if {($len <= 0) & [eof $channel]} {

close $channel
return

}

processMessage $channel $line
}

The agent server is just a little more complex. Once the server
has received a complete command, it can eval it within the
proper safe interp, but until then, it needs to save the data and
check each time there’s a new line.

The code below saves each line as it’s read in an associative array
indexed with the field name input and the channel identifier. It
checks the saved text to see if it’s a complete Tcl command, and
if it is, processes it. If not, it appends a newline (the gets com-
mand strips off newlines), and continues.

One trick with the info complete command is that an empty
string has no mismatched quotes, braces, etc., and is thus com-
plete, even if it’s meaningless. The script checks for empty lines
just to avoid wasting time processing nothing.

proc readLine {channel} {
global State

Read a line of data
set len [gets $channel line]

Close if we've received an EOF from the client
if {($len <= 0) & [eof $channel]} {

close $channel
::safe::interpDelete $State(interp.$channel)
return

}

Put the data in a safe place
append State(input.$channel) "$line"

And check to see if we've got a complete command

if {(![string equal " " $State(input.$channel)]) &&
([info complete $State(input.$channel)])} {
processMessage $channel
set State(input.$channel) " "

} else {
if {(![string equal " " $State(input.$channel)])} {

append State(input.$channel) "\n"
}

}
}

The processMessage procedure is quite simple. All it needs to
know is the channel identifier, which it can use to index into the
State associative array to find the appropriate input and inter-

THE TCLSH SPOT l

Vol. 29, No.2 ;login:44

preter. It evaluates the script within the proper interpreter and
sends the results to the client, along with a new Ready prompt.

proc processMessage {channel} {
global State

if {[string match "" [string trim $State(interp.$channel)]]} {
return

}
set rply [$State(interp.$channel) eval $State(input.$channel)]
puts $channel "$rply"
puts $channel "Ready"

}

With the addition of a dozen lines of code (including some
comments), we’ve changed the previous simple server into one
that handles receiving scripts to be evaluated remotely, while
maintaining the security of the system the server is running on.

The previous client was very simple. It sent a command to the
server and waited for the reply. The reply was always a single
line, and each command had a reply.

The protocol for communicating with this agent server is a little
more complex. Input is requested with a Ready prompt, and
other information is the response to the previous client com-
mand. We can add a procedure to watch for the Ready prompt.
This procedure grabs a line of data and checks to see if it’s the
expected prompt. If it’s not the prompt, the line of input is
saved; when the prompt is received, the input is returned to the
calling script.

proc wait4Prompt {channel prompt} {
set rtn " "
while {[string first $prompt [set line [gets $channel]]] != 0} {

if {[eof $channel]} {error "CLOSED" "Channel Closed"}
append rtn "$line\n"

}
return $rtn

}

With the addition of that procedure, a simple agent that
requests a base64 encoding of some data might resemble this:

set setup {
package require base64
}

set serverSocket [tls::socket -password getPassword \
-keyfile $certDir/clif@noucorp.com.key \
-certfile $certDir/../1000.pem \
-cafile $certDir/../rootca.pem \
-request true -require true $host $port]

fconfigure $serverSocket -buffering line

wait4Prompt $serverSocket Ready

puts $serverSocket $setup
wait4Prompt $serverSocket Ready

puts $serverSocket [list base64::encode "This is a test
message."]

set rply [wait4Prompt $serverSocket Ready]

puts "The reply is: $rply"

And that’s a basic mobile agent client/server pair. In this imple-
mentation, only valid agents are allowed to use the server. The
validation is done with the OpenSSL extension (TSL) which
only allows connections from an agent that knows the pass-
words and keys to the SSL configuration files that exist on the
server.

Including comments, this is 161 lines of code. Of course, inter-
esting agents will have more application-specific instructions.
As usual, this code will be available at http://www.noucorp.com.

http://www.noucorp.com

