
C L I F F L Y N T

the tclsh spot
Clif Flynt is president of Noumena Corp., which
offers training and consulting services for Tcl/Tk
and Internet applications. He is the author of
Tcl/Tk: A Developer’s Guide and the TclTutor
instruction package. He has been programming
computers since 1970 and a Tcl advocate since
1994.

clif@cflynt.com

T H E P A S T F E W T C L S H S P O T A R T I C L E S
described a software architecture in which
the main-line code is compiled, and then
Tcl/Tk scripts are invoked to read input and
display results. A major strength of this
architecture is that the look and feel of an
application can be drastically modified
without touching a line of compiled code.

An old FORTRAN TTY-based program, the Lunar
Lander, was modified to run in real time, with a display
that looks like this:

This article will show how to replace that GUI with
one that shows the state of the lander graphically at
each second of the descent.

The first few seconds of a landing on Earth might look
like this:

The numeric values are displayed using the Tk label
widget, as in the previous GUI. The area below the
labels is a graph displaying the height of the lander on
the Y axis, and time into the landing on the X axis. The
points on the graph are drawn with rockets.

The rockets show:

The current height of the rocket (the Y axis
of the graph)

The number of seconds into the landing
(the X axis of the graph)

The current speed (the height of the rocket)

The remaining fuel (the width of the rocket)

The amount of fuel burned in this timestep
(the height of the flame below the rocket)

You can see in the display that the rocket falls a little
faster each second when there is no thrust applied.
With half-thrust it still accelerates, while reducing the
amount of fuel. At full thrust, the speed is close to con-
stant (in fact, there is a very slight negative accelera-
tion), and the fuel is consumed more rapidly. This is

12 ; L O G I N : V O L . 2 9 , N O . 5

; LO G I N : O C TO B E R 2 0 0 4 TH E TC LS H S P OT 13

not as extensive as Charles Joseph Minard’s graph of Napoleon’s Russian cam-
paign, but it does convey five dimensions of data in two dimensions.

The Tk canvas widget makes this sort of data representation easy. The Tk canvas
widget is an object-based drawing surface inspired by Joel Bartlett’s ezd program.
It enables the programmer to define a window into an arbitrarily large drawing
surface and place graphic objects on that surface. The graphic objects are each
defined by a location and a set of configuration options specific to the type of
object.

For example, a text object can be configured to display a certain set of text in a
certain font, while a rectangle object can be assigned height, width, and colors.

Once an object is created, it can’t change type, but its location and configuration
options can be modified as necessary. Thus, the words displayed by a text object
can be changed, as can the font or color.

A new canvas widget can be created and displayed with the same syntax as other
Tk widgets. The command is canvas, followed by the name of this canvas, fol-
lowed by a list of key/value option pairs. The newly created canvas is displayed
using either the pack, place, or grid geometry manager.

Syntax: canvas canvasName ?options?

canvasName The name for this canvas
?options? Some of the options supported by the canvas widget are:

-background color
The color to use for the background of this canvas. The
default color is light gray.

-height size
The height of the displayed portion of the canvas. If
-scrollregion is declared larger than this, and scroll-
bars are attached to this canvas, this defines the height of
the window into a larger canvas.
The size parameter may be in pixels, inches, millimeters,
etc.

-width size
The width of this canvas widget. This may define the size
of a window into a larger canvas.

-scrollregion {left top right bottom}
The region of a larger canvas for the window to scroll over.
These coordinates define the area of a canvas that can
scroll into view when the canvas is attached to a scrollbar
widget.

Like other Tk widget creation commands, the canvas command returns the
name of the canvas it created, and also creates a new procedure by that name to
use to interact with the canvas.

For example, this command:

set cvs [canvas .c -height 500 -width 700 -background white]

creates a new canvas named .c and a new procedure named .c and assigns the
value .c to the variable cvs.

The new .c procedure supports several subcommands, including:

create

Create a new object on the canvas. Returns a unique ID for the new object.

configure

Query or set canvas configuration options.

14 ; L O G I N : V O L . 2 9 , N O . 5

itemconfigure

Query or set configuration options for an item on the canvas.

xview

Define the window into a canvas to be displayed.

bbox

Returns the bounding rectangle that encloses a set of canvas items. The com-
mand canvasName bbox all returns the bounding rectangle that includes
all items displayed in a canvas.

bind

Assign a binding to an item on the canvas.

The most used canvas command is the create command. The syntax for this
command is:

Syntax: canvasName create itemType coords ?options?

itemType

The type of item to create may be arc, bitmap, image line, oval,
polygon, rectangle, text, or window.

coords

The coordinates for this item. The coordinates are X/Y pairs. All itemTypes
require at least one X/Y pair. Some itemTypes (ovals, rectangles) require
two pairs to define the opposing corners of a bounding rectangle for the
object. Lines and polygons can have multiple X/Y pairs to define the corners
of the figure.

The canvas coordinate system places 0,0 on the upper left corner. X values
increase toward the right, and Y values increase toward the bottom.

options

Keyword/value pairs to define configuration options for a graphic item. The
supported keywords are different for different types of graphic items.

The axes for a graph can be created with line and text objects. The commands
to create a canvas, short horizontal line, and text would look like this:

set cvs [canvas .c -height 500 -width 700 -background white]

$cvs create line 10 10 20 10

$cvs create text 25 10 -text "10000"

By adding a couple of loops, the code to draw the X and Y axes and ticks looks
like this:

Create the axis lines

.c create line 40 20 40 480

.c create line 40 460 4000 460

Create and label the ticks on the Y axis

for {set i 0} {$i <= $height}\

{set i [expr {$i + $height/10}]} {

set y [expr {460 - ($i * .044)}]

.c create text 3 $y -text $i -anchor sw

.c create line 10 $y 40 $y

}

Create and label the ticks on the X axis

for {set i 40; set j 0} {$i < 4000 }\

{incr j; incr i 25} {

; LO G I N : O C TO B E R 2 0 0 4 TH E TC LS H S P OT 15

.c create text $i 482 -text $j -anchor nw

.c create line $i 460 $i 475

}

The horizontal X axis line goes from pixel 40 to pixel 4000. That’s a bit longer
than most monitors. The canvas widget has commands that make it easy to
attach the canvas to horizontal and vertical scrollbars.

Create a scrollbar with the scrollbar command:

Syntax: scrollbar scrollbarName ?options?

scrollbar Create a scrollbar widget.

scrollbarName The name for this scrollbar.

options This widget supports several options. The -command option
is required.

-command “procName ?args?”
This defines the command to invoke when the state of the
scrollbar changes. Arguments that define the changed
state will be appended to the arguments defined in this
option.

-orient direction
Defines the orientation for the scrollbar. The direction
may be horizontal or vertical. Defaults to vertical.

-troughcolor color
Defines the color for the trough below the slider. Defaults
to the default background color of the frames.

The wish interpreter handles the interaction between the canvas and
scrollbar by registering a callback procedure with the scrollbar and
canvas widgets. Whenever one of these widgets changes state, it will evaluate
the registered script to update the other widget.

The code to create and display a canvas and scrollbar resembles this:

canvas .c -height 500 -width 700 -background white \

-xscrollcommand {.sb set}

scrollbar .sb -orient horizontal -command {.c xview}

grid .c -row 4 -column 1

grid .sb -row 5 -column 1 -sticky ew

The canvas xview and yview subcommands are invoked by a scrollbar when
it changes state (e.g., a user drags the slider). The scrollbar set command is
invoked by the canvas when it changes state.

After creating the canvas and drawing the X and Y axes with the code above,
the canvas widget would show the X axis from pixel 0 to 700, and the scrollbar
would have a slider that extended from edge to edge.

By default, the canvas widget is set to scroll for the width of the canvas, i.e.,
not to scroll at all.

The -scrollregion option defines the portion of the canvas that can be
scrolled into. The argument to the -scrollregion option is a list of the left,
top, right, and bottom coordinates of the rectangle that can be scrolled into.
Adding the command

.c configure -scrollregion {0 0 4000 500}

after drawing the axes causes the canvas to change its state, which invokes the
scrollbar’s set command to make the slider show that the leftmost portion of a
larger window is being displayed.

16 ; L O G I N : V O L . 2 9 , N O . 5

In this case, we know the area of the canvas we need to scroll around in. If
your application is creating objects without knowing the boundaries, the bbox
command can be used to find the bounding rectangle.

Syntax: canvasName bbox tagOrId
bbox

Return the coordinates of a box that would enclose the item, or items with
the same tag.

tagOrId
A tag or unique ID that identifies the item. If a tag is used, and multiple items
share that tag, then the return is the bounding box that would cover all the
items with that tag. The tag all can be used to return the bounding box for
all items on a canvas.

The bbox command returns the bounding rectangle in the same format that
the -scrollregion configuration option requires, so a command like:

$cvs configure -scrollregion [$cvs bbox all]

can be used to set the scrollregion for a canvas without tracking where graphic
items have been placed.

The xview and yview commands can be used to bring newly placed objects
into view.

Syntax: canvasName xview moveto fraction
fraction

The fraction of the scrollwindow to place to the left of the leftmost edge of
the viewed window. A value of 0 will display the leftmost area of the scroll-
region, while a value of 0.5 would not display the left half of a scrollregion.

As the Lander program runs, it will start drawing rockets to the right of the 700
pixels that are displayed by default. The user can scroll to the latest rocket, but
it’s friendlier if the application automatically scrolls to display the latest output.
The application can display the latest rocket, and the previous 20 rockets (500
pixels) with this command:

.c xview moveto [expr { ($x-500.0) / 4000.0}]

The next step is to draw the rockets. The rockets are created with the create
polygon subcommand. The create polygon command can accept an arbi-
trary number of X/Y pairs to define the nodes on the polygon. The syntax
looks like:

Syntax: canvasName create polygon coord ?option value?
coord

A list of X/Y pairs to define corners of the polygon.

?option value?

Keyword/Value pairs that define configuration options for this polygon.
Options include:

-fill color

A color to fill the polygon.

-outline color
A color for the line outlining the polygon.

-width distance
A value for how wide to make the outline. By default this is a number of
pixels, but it can also be defined in points, inches, millimeters, or cen-
timeters.

; LO G I N : O C TO B E R 2 0 0 4 TH E TC LS H S P OT 17

The mainline FORTRAN code calls a Tcl procedure named showState to dis-
play the current lander status. The showState procedure is passed the time,
height, speed, and remaining fuel of the rocket. The time and height define the
X and Y coordinates, and the speed and remaining fuel can be scaled to define
the height and width of the rocket.

With these values, the position of each node of the polygon describing the
rocket can be calculated.

The command for performing arithmetic operations in Tcl is the expr com-
mand. The expr command takes an arithmetic expression as an argument and
returns a numeric result. For most Tcl applications, commands this verbose are
a bit unwieldy, but not a serious problem.

set y2 [expr {$y - ($speed / 10)}]

set wid [expr {2 + $fuel/150.0}]

set tall [expr abs($speed)/5.0]

However, for calculating each node on a polygon or line, the successive expr
commands can make the application overly verbose and difficult to read.

Lars Hellstrom described an elegant solution to this on the Tclers’ Wiki
(http://wiki.tcl.tk/8389). Since any string can be the name of a Tcl procedure, we
can define procedures named “+” and “-”, to return simple arithmetic opera-
tions. The code to do this looks like this:

proc + {a b} {

return [expr $a + $b]

}

proc - {a b} {

return [expr $a - $b]

}

With this trick, describing the outline of the rocket looks like this:

set rocketID [.c create polygon $x $y \

[+ $x $wid] [+ $y 10] \

[+ $x $wid] [+ $y $tall] \

[+ $x (5+$wid)] [+ $y ($tall+4)] \

[+ $x (5+$wid)] [+ $y ($tall+9)] \

[+ $x ($wid-5)] [+ $y $tall] \

[- $x ($wid-5)] [+ $y $tall] \

[- $x (5+$wid)] [+ $y ($tall+9)] \

[- $x (5+$wid)] [+ $y ($tall+4)] \

[- $x $wid] [+ $y $tall] \

[- $x $wid] [+ $y 10] \

-fill $fill -outline black]

A failing of this display is that it doesn’t show the exact height, speed, fuel
burned at any given time. This failing can be solved with the canvas bind
command. The bind command lets us put a binding for some action on a
graphic item.

We can add a binding on each rocket so that when the rocket is clicked, it will
display the speed, altitude, remaining fuel, and burn.

18 ; L O G I N : V O L . 2 9 , N O . 5

Clicking the rocket at X location 69 would generate this display:

The bind command links an event to a widget and a script. If the event occurs
while the focus is on that widget, the script associated with that event will be
evaluated. Each object on the canvas can also be bound to certain actions such
as having a cursor pass over the object or a button clicked while the cursor is
over the object.

Syntax: canvasName bind tagOrID eventType script

tagOrID

The tag or ID number of the canvas item to have this action bound to it.

eventType

The event to trigger this action. Events can be defined in one of three for-
mats:

alphanumeric: A single printable (alphanumeric or punctuation) char-
acter defines a KeyPress event for that character.

<<virtualEvent>>: A virtual event defined by your script with the
event command.

<modifier-type-detail>: This format precisely defines any event
that can occur. The fields of an event descriptor are the X windows codes
(e.g., Button1 or B1).

script

The script to evaluate when this event occurs and the cursor is over a canvas
item with this tag or ID.

The line below shows a bind command that links the rocket that was just
drawn to a button click event. When the left mouse button is clicked over the
rocket, the Tcl interpreter will evaluate the procedure showDetails with an X
and Y location and the speed, altitude, fuel, etc. The script can be any valid Tcl
script. In this case, the showDetails procedure is a user-provided script that
clears an old information line and then creates new text on the canvas.

.c bind $rocketID \

"showDetails $x [- $y 30] $speed $fuel $ht $burn"

Notice that the script is enclosed within quotes, not curly braces. Tcl will per-
form substitutions on lines enclosed within quotes, while the curly braces will
force the substitution to be delayed until the script is evaluated.

In this case, we want the speed, fuel, etc., to be substituted when the rocket is
drawn and the binding is created. If we needed to have the substitution done
when the event occurred (for instance, if the diagram were a real-time monitor
for our network), we’d enclose the script in curly braces, and the variables
would be substituted when the object is clicked.

The one problem with a FORTRAN mainline linked to a Tcl/Tk library is that it
requires that the user have Tcl/Tk installed in order to run the FORTRAN pro-
gram. The next Tclsh Spot article will explain how to use TOBE to make a sin-
gle, stand-alone executable that you could ship to a customer who had never
heard of Tcl/Tk.

